1) Recall that 
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denotes the symmetric group of degree 6, the group of permutations f the numbers 1 to 6. let 
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Thus 
[image: image3.wmf]{

}

{

}

:1,2,3,4,5,61,2,3,4,5,6

s

®

 is a bijection, mapping 1 to 3, 2 to 5, etc. let
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· Compute 
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 and 
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 and write them also b array form. (don’t forget that, as we write maps in the left , 
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 means do 
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 and then 
[image: image9.wmf]s

, so 
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 and so on)

· Compute the order of 
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.

· Elements of 
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can be written in an alternative form, called cycle notation. Starting with 1, we see that 
[image: image13.wmf](1)3, (4)1
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, back to the start. So the first cycle for 
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 is (1 3  4). As this has 3 numbers, it is called 3-cycle. Next, we take a number not yet mentioned, e.g, 2. we see that 
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. So the next cycle for 
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 is (2  5). Finally we get a 1-cycle, (6). We write 
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. Write 
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 in cycle notation.
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