1. Let S be a set. The group with presentation (S, R) where $R = \{[s, t] | s, t \in S\}$ is called the free abelian group on S denote it by A(S). Prove that A(S) has the following universal property: if G is any abelian group and $\varphi : S \to G$ is any set map, then there is a unique group homomorphism $f : A(S) \to G$ such that $f|_S = \varphi$.