
ht.J.S"liJ:StratrurtrVol 
26 No 2 pp 175-184 19q0

Prinled ln CreJt Brllarn

0020-7683/90 s3 00+ .oo

O 1990 Pergamon Press Plc

EXPERIMENTAL VERIFICATION OF MODAL

PARAMETERS FOR 3-LAYERED SANDWICH BEAMSI

M LnIsowt-tz and J' M' LrpsHtrz

Facurty of Mecn_,"^,r:;f;il:f 
Sf,;]i"lll","r;r,liraerrnsritute 

or rechnorogv,

(Receiued 7 Nouentber 1988)

INTRODUCTION

In a previou tz and Leibo witz, 1987)'a method was developed for the optimal

designofthwichbeamsmadeoftwoelasticiayersandaviscoelasticlayer
sandwiched ' A sixth-order equation of motion with complex coelilcients' of

a sandwich beam in free vibrations' was solvet

are discussed'

n beams; the method of measuring the vtsco-

elastic properties of the core material; the experimental set-up. for measuring the modal

parameters of the beams, and a brief description of the method of calculating the modal

parameters. This is fbllowed by a comparison between the measured and predicted values

and finally, the efi'ects of va.ying the thickness of the layers on the modal parameters are

discussed.

EXPERIMENTAL

The beams were made by molding alayet of Neoprene CR-602 between two layers of

2024 aluminum. Forty millimeters along the center oflhe beam (see trig' 1)' the Neoprene

core was replaced by aluminum, to facilitate gripping of the beam to a heavy stattonary

base. Thus each unit contained two fixed-fre. .-uniil"ult beams of iength 180 mm each The

dimensions of the beams in the program are i

The Neoprene that was used in the pr<

minimize variations in properties. Its dynan
determined experimentally over a frequencl
test arrangement for measuring these prope

implemented by Jones and Parin (1972) and

The test arrangement for measuring the

shown in Fig. 3. The sandwich beam was att
rubber pad. An impact by a PCB-modally
piezoelectric force transducer, excited the v

- tThis work is part o1'an M.Sc. Thesis of the lirs1 author, undertaken at Technion-Israel Institute of

I echnology

175



176 M. Llrsowtrz and J, M. LtPsHIrz

Ht

Hz

H3

Fig I Geometry of a sandwich beam (dimensions in millimeters)

A-Vibrator

B-Base

C-Neoprene

D-Vibrating Mass

E-Accelerometers

l-l

Frg. 2. Test arrangement for measuring Neoprene's dynamic properties (dimensions in millimeters)

Fig. 3. Test arrangement for sandwich beams.

Table I Specimens geometr)

Beam F1, (mm) I/r (mm) 'Il3 (mm)

4 5

5

7

0

0

0

IA

4A

10A
llA

l1
2.0
37
5.0
5.0
40

0.1
08
l2
2.7
3,0
I7

SmdwichBem
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Ti me (msec)

trig 4 A Lypical impuJse sarnplirg of a sandwrch beam

damped motion was picked up by a proximity displacement transducer which was attached

to thl heavy base near the free edge of the beam. The force and displacement signals were

fed into a GEN-RAD 2507 computer for furthel processing and calculation of the modal

paran1eters.

Details of the experimental conditions and instructions how to run the tests are given

in the manual of CAE International (1983), and by Ramsey (1915,1976), and Ewin (1984)'

However, since the proc€dure is fairly complex and requiles many decisions by the operator

of the instruments, some guidelines are given here.

-The amplitude and duration of the exciting pulse must be in the right range, so that the

required mode of vibration is excited without causing overload. This can be controlled

by selecting different caps for the impact head.

-The working frequency, which determines the rate of sampling the exciting impulse, must

be high enough to allow at least five sampling points and at the satne time low enough

to prevent high bias error. A typical impulse sampiing is shown in Fig. 4.

-The number of impulsive excitations in each test must be quite high (we used 20), to

assure high coherency.

-The initial gap between the beam and the displacement transducer should be determined

such that its output signal be as close to linear as possible over the entire range of the

vibratory motion.

The frequency response of the sandwich beam was approximated by an analytical
function based on the energy spectral density of Prony (Hildebrand, 1956; Van Blancum'
l97S). The damped frequency and the damping ratio were two of the parameters that were

obtained by this procedure. The values that were obtained bir the curve fitting process

depended on the visual judgement of the operator and his selection of various parameters,
but with some training and care (Formenti and Welaratna, 1981), variations in values

obtained from differeni "acceptable" functions were about 3o/o in frequency (of the first
mode) and not more than l5% in damping.

CALCULATION OF MODAL PARAMETERS

The analytic prediction of the modal parameters consisted of two parts :

(a) cleveloping the equation of motion and the proper boundary conditions, and
(b) solving the problem numerically.

The eqr.ration of motion for transverse vibrations and the solution type, followed the
derivation given by Mead and Markus (1969). The numerical solution was based on the
procedure developed by Rao (1911),by using an improved iteration procedure with complex

E 0.1
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double precision. Some of the derivations and the assumptions are repeated here for

completeness.
A sandwich beam is made of three layers : two elastic face plates with thickness 11,

and H 3 and moduli E , and 83, respectively, and a viscoelastic core of thickness l1r, density

pr, unicomplex shear modulus G : Gr(l +iq). The width of the beam is &, and its length

I. The following assumptions are used in developing the equation of motion :

(a) the elastic face-plates carry only longitudinal stresses;

iUl tn" core carries only shear stresses and is modelled as a linear viscoelastic material ,

(c) transverse strains are neglected in both core and face-plates;

(d) the layers are perfectly bonded;
(e) the longitudinal and rotatory inertia are neglected.

The equation of motion for free transverse displacement w(x, l) is

7aw 6aw A2w

-s(l+ Y) af t 
-ax, 

aT -e 67: tt

where x and I are normalized length and time :

i: xlL and t: tlto; [to:1mL41D,1tt21,

m is the mass of the beam per unit length and D, is the total flexural rigidity :

D,: b(EtHl+n'u1)ltZ,

g is a shear parameter:

s : G z0 +i4 ) L2 b(E A | + E3A ) I (H 2E 1A' E tAr),

and I is a geometric Parameter :

Y : @2 I D )E 1A 1E3A3l (E 1A 1 * EzA)

where d: Hz*(H,+H)12.
The modal parameters are obtained by considering a solution

w(x,t): W,(t)T(t)

that leads to the two equattons

f +a]0-rirr)T: o

(1)o"h)
il0x"

(2)

(3)

(4)

r5\

(6)

(1)

ancl

w!,'-s\+Y)Wt/ -6:(1'1i4,)(wt) -9W,) :0 (B)

The (normalized) natural frequencies , a,, and modal damping, rl11, ate obtained by solvlng

eqn (8) subject to the appropriate boundary conditions. These conditions for the clamped-

free case used in our work are

lor the clamped end. and

W : Wt : W' -gYWttt :0 (e)
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Table 2 Experimental and theoretical modal parameters olfixed free sandwich beam in mode 1

Frequency (Hz) Damprng, 4

Bean.t Measured Calculated 7o Deviatiou Measured Calculated okDeviation

IA
2A
4A
1A

l0A
l1A

I 15.5
139 5

107.5
120 5

115.0
115,5

lt3 2

133 9

105 4
r24.4
119 2

111.7

-2.0,40
-20

3.2
31
33

0.052
0 062
0.072
0.054
0 060
0.078

0 0521
0 0s98
0.0816
0 0506
0.0598
0 0733

1.3

-3 5

13 3

63
- 0.3

- 6.0

Wtt :0 
I

wry -ot10 -liq,)w : o 
I

Wu - s0 + Y)Wru - @i0 1i4,)W' -- 0)

(10)

for the free end. The calculated values of natural frequencies and damping in the next

section were obtained by a numerical solution of the determinant derived from the boundary

crilldrtions, using an improved iteration procedure with complex doubie precision'

RESULTS AND DISCUSSION

The dynamic Properties of the

a linear frequency dePendence in
damping 4 , are given by

Frequency (Hz)

viscoelastic core were determined by the tests to have

the test range. The dynamic shear modulus G, and

Damping,4

Gr(f) : L007 x 10- 3/+ 1.386 MPa

4ztf ) : 1.608 x l0- 4 f +0.256

where/is the frequency inHertz.
These values, togeiher with Young's modulus E:71GPa for the aluminum skins,

where used in the numerical procedure of Lifshitz and Leibowitz (1987) to calculate the

damped natural frequency ani damping of the sandwich beams listed in Table 1, for the

fixed-free end conditionr. Th" results of the calculations and the experiments are listed in

Table 2 for the first mode and in Table 3 for the second.

It is clear from the tables that the agreement between the experimental and calculated

frequencies is good for the fi.rst mode and reasonable for the second mode' The agreement

between damping values is less favorable : all but one of the beams show variation of up to

6% in the first irode, and up to 33"h in the second. This may sound a lot, but in fact

damping measurements are known to have large variations, which become larger for higher

modes even when the excitation is sinusoidal. In the present work, where the beam is excited

rmpulsively and the "experimental" values are obtained after some curve fitting and other
approximations by the operator of the system, it is not surprising that we get such variations'
Hence, the values in tibles 2 and 3 are within the range of acceptable results, and the

Table 3. Experimental and theoretical modal parameters of fixed ft'ee sandwich bean in mode 2

Measured Calculated 7o Deviation Measured Calculated o%Deviation

IA
2A
4A

l0A
uA

628.5
765 0
58 r.0
674.0
631 0
612.0

669 0
193.0
6r3 0

747 0
712.0
65 8.0

6.4
3.7
5.5

108
t2.8
1.5

0 041
0 049
0.035
0.03 6

0 036
0 049

0.0310
0 0330
0 0402
0.0235
0 0210
0.0344

-24.4
-32.7

14.9

-34.7
25.0
298
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Fig,5Variationsinmodaldampingofanunsynrmetricalsandwichbeam.

method developed by Lifshitz and Leibowitz (1987) for calculating natural frequency and

damping of a sandwich beam is considered reliable'

uuuing established confidence in the method of calculating modal parameters of given

sandwich beams, it rs worthwhile investigating the dependence of the modal damping on

the parameters of the beam structure. In particular, gate the effects ol

geometrical changes on the damping' This has pra since constrained

iamping layers of various thicknesses are available it is not obvious

which one is better for vibration damping in a given structure'

To show variations of damping with thtckness of the layers we use two approacnes'

an unsymmetrical beam, in which one layer of the sandwich beam (I/,) has a constant

thickness and the other two layers vary as shown in trig 5, and

a symmetrical beam, where the two elastic outer layers have the same thickness

(H, : H.) as shown in trig' 6'

O

\a)

(b)

The first approach depicts a case where a constrained viscoelastic layer is to be bonded to

an existing elastic beam, while the second portrays the effects of thicknesses on damping in

a specific case of a symmetrical beam. Since Figs 5 and 6 are not intended to be used as

design graphs, but merely as an illustration of the problems involved in selecting damping

layeis, we decided to present them in a dimensional form for specific beams. In this form

it is easier to show the effects of geometrrcal changes on damping. The possibility of

normalizing Fig. 5 with respect to the base layer (111) is discussed later.

The surface in Frg. 5 is similar to a saddle, parailel to the 1/2 axis. It shows that for a

given thickness of damping layer, H2, Ihe symmetrical de ') 
gives

damping. When the beam is symmetric (H': Ht:5 m amplng

highlr modal damping than thicker ones, but even the max g falls c

be]ow the damping of the core material. when the constraining layer is thin (/13 < H,)" as

in most commercial cases, we get practically the same modal damping regardless of the core

thickness, and the damping value is low'
The surface in Fig. 5 ir"d.u*lr for a particular family of cantilever beams, where 1/, : 5

mnr. Similar surfaces ca.r b. drawn for other values of H,, but they cannot be reduced to

a single surface by a norrralization procedure with respect to Ht. To show this' Fig' 5 ts
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H1=5rm

'=

o

normalized with respect to 11, (see Fig. 7), and we also include thicknesses beyond the

practical range of dan-rping layers. If we repeat the same calculations for a sandwich beam

with a base laye. of ditrerent thickness (say 11, : 2 mm)' the surface (shown in Fig' 8) is

different from the one shown in Fig. 7. Thus, for each value of f/' we get a different surface

of damping values. The difference between Fig' 7 and Fig. 8 can be viewed from a different

angle, by drawing lines of equal damping as shown in Figs 9 and 10' It becomes clear that

beamsof thesameratios H.l H,andHrl Htbutdifferentvalues of Hl,havedifferentvalues
of modal damping.

A 
'q

0.15 
j

0.10

a 
a*o\$utt

''h o . ^s\\"e\"

Fig. 6. Variations in modal damping of a symmetrical sandwich beam'

'{!)

Fig. 7 Variations in modal damping of an unsyrnmetrical normalized sandwich beam (.I11 : 5 mm).
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$

Fig 8 Variations in modal damping of an unsymmetricai normalized sandwich beam (H, :2mm).

The surface in Fig. 6, which represents damping of symmetric sandwich beams, is

different. The dependence of modai damping on the core thickness becomes stronger as the

elastic layers get thinner. For thin elastic layers the modal damping increases rapidly with

core thickness, as can be seen also in Figs 7 and 8, and reaches values close to the damping

of the core material. This is expected because a sandwich beam with a thick core and very

thin outer skins ceases to function as a sandwich beam'

In practice, however, there are generally design constraints that must be met and we

are not free to select the geometry of the sandwich beam at wi1l. This, with the complex

b

:

'4

O

U

Fig. 9 Lines

Skins Ratio (I{:/Hr)

of equal damping ol an unsymmetrictrl normeLljzed sandwich beam (-f1, : 5 mm)

/itl
I

I
/

s
l

Hl=5m
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:

q
,4

O

0J'0

L

Skins Ratio (H3/HL)

Fig l0 Lines of equal damping of an unsymmetrical normalized sandwich beam (I1' : 2 mm)

shapeofthedamprngSurfaceshavemotivatedthedevelopmentoftheoptimiZationprogram
(Li|shitzandLeibowitz,lgST)aSadesigntoolforsandwichbeamswithmaxtmumVrsco-
elastic damping.

CONCLUSIONS

(l)Themethodofcalculatingmodalparametersfora3-layersandwichbeam'bya
numerical solution of the sixth-ora.r dete.minant derived from eqs (9) and (10), can

beusedwithintherangeofenglneerlngu""".u"vValuesforthefirstmodeofvibrations
arewithinaf.ewpercentofexperimentalvalues.Theagreementbetweenexperimental
and calculated values for the second mode is not as good'

(2) Dependence of modal damping on putu-ti"ts of t[e sandwich beam (geometry and

materials) is very complex and cannot u" p..Ji"t.a by elementary calculations' Under

certain conditions (Fig. 5) a thinnerco.. giu., higher damping values, whereas under

other conditions (Fig. 6) a thicker .or. t"ui-, io nl"gtt.. damplng' The recommendation

is, therefore, to use an oprimization r."h;i;;; titz tne one developed by Lifshitz and

Leibowitz (1987) for solving real design problems'
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