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A TRUST REGION ALGORITHM FOR EQUALITY CONSTRAINED
MINIMIZATION: CONVERGENCE PROPERTIES

AND IMPLEMENTATION*

AVI VARDI

Abstract. In unconstrained minimization, trust region algorithms use directions that are a combination
of the quasi-Newton direction and the steepest descent direction, depending on the fit between the quadratic
approximation of the function and the function itself.

Algorithms for nonlinear constrained minimization problems usually determine a quasi-Newton direc-
tion and use a line search technique to determine the step. Since trust region strategies have proved to be
successful in unconstrained minimization, we develop a new trust region strategy for equality constrained
minimization. This algorithm is analyzed and global as well as local superlinear convergence theorems are
proved for various versions.

We demonstrate how to implement this algorithm in a numerically stable way. A computer program
based on this algorithm has performed very satisfactorily on test problems; numerical results are provided.

1. Introduction. Consider the problem of minimizing a smooth nonlinear function
subject to nonlinear constraints: minxf(X) subject to hi(x)=0, j 1,..., m, m < n.
Most of the methods for this problem attempt to transform the constrained problem
to a related unconstrained problem of minimization or solving equations and then to
translate the quasi-Newton technique on the unconstrained problem back to the
constrained problem. We will mention a few quasi-Newton methods that are related
to this work. They deal with one type of algorithm: at each iteration a quasi-Newton
step is generated and then a line search technique is used to decide which point should
be accepted. For the purpose of deciding which point to accept, a penalty function is
designed. This function may look like PL(x)-f(x)+y_,z, lh,(x)l where the /zi’s are
penalty parameters that have to be determined.

Han 15], using the quadratic programming approach without line searches, and
Tapia [29], using the multipliers update formula approach, generalize the local conver-
gence theory of Broyden et al. [3] and prove q-superlinear convergence. One paper
that considers the effect of the penalty function on local convergence is Chamberlain
et al. [4].

In all these approaches the algorithms use approximations to the Hessian of the
Lagrangian function with respect to x. In order to guarantee local q-superlinear
convergence, we must assume that the initial Hessian approximation is close enough
to the Hessian at the solution which may not be positive definite. Powell [24] analyzes
local convergence and explains why positive definite Hessian approximations can still
be used.

Han [14], under some conditions that bound the Hessian approximations, estab-
lishes global convergence when an exact line search (for a penalty function) is used.
A similar analysis with more emphasis on implementation appears in Powell [25].

In 2 we derive the quasi-Newton step for the problem. The main contribution
of this paper is the introduction of a trust region algorithm for equality constrained
minimization and this is the subject of 3. The idea behind the algorithm is that at
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each iteration the quadratic approximation to the function which is used to obtain the
quasi-Newton step is trusted only within a sphere of radius r around the current point.
This strategy has proved to be successful in unconstrained minimization (see [31]).
The convergence properties of the algorithm are presented in 4 and in 5 we
demonstrate how to implement the algorithm and provide numerical results.

Notation Convention: We use superscripts to denote the current iteration. Thus
AXk is the step at the kth iteration. In order to avoid confusion with powers of matrices
we use parentheses in the following way: (lk) denotes the jth power of the matrix
lk where Bk is a matrix associated with the kth iteration.

(ao) by (Ax, Av). All vectorWe also often replace for convenience (x) by (x, v) and ax

norms are Euclidean norms, i.e., Ilxll Ilxll== (Yxff) ’/=.

2. A quasi-Newton algorithm. Consider rn + real valued functions f, ht,’’ ", hm
defined on R". We are interested in solving the problem

(2.1) min f(x).
x:h(x)=O

We will actually try to find a local minimizer for this problem, i.e., a feasible point
x* such that there exists a 8 >0 such that for all x satisfying h(x) 0 and IIx-x*ll <
f(x*) <-f(x). Assign Lagrange multipliers v,..., Vm to each of the constraints and
form the Lagrangian function

(2.2) L(x, v) =f(x) + h(x) rv.
The gradient of L will be denoted by

VoL(x, v) \ h(x)

where

(x)l
Vf(x) and

OO_ (x Ohmox-- 
Vh(x)

ah ahm

The Hessian matrix of L will be denoted by

(2.3) V2L(x, v)=\V2oxL(x v) V2ovL(x, v) Vh(x)T 0

where

and

LOxox
(x)

k,l=l,...,n

V2hi(x) (x) for i= 1,"" ", m.
19Xk OX k,i= l,...,n

We will assume that f, hi," ", hm are twice continuously ditterentiable and there
exists a Lipschitz constant K such that

IIv=f(x)-V=f(y)ll gllx- yll,
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and
IIVEhi(x)-V2hi(y)ll <= KIIx- yll Vi 1,..., m

and that f is bounded below.
At a local minimizer x* there exists v* R" such that VL(x*, v*)= 0. We assume

that Vh(x*) is of full rank and that for all zR", such that Vh(x*)7"z=O,
T 2 gz VxxL(x v*)z> 0. We also assume, for now, that Vh(x) is of full rank for all xR";

we will show in 5 how to handle the case when Vh(x) is not of full rank.
Looking at the Hessian matrix VaL(x, v) as defined by (2.3), we see that the term

VL(x, v) requires second derivatives off and h,’s. Since in practice second derivatives
are often unavailable, we use approximations B..V2,L(x, v). Having the matrix B,
we also obtain an approximation to the matrix VaL(x, v) of the form

B= Vh(x)rB Vh(x)0 =VEL(x’v)=\ Vh(x)r 0

When B is replaced by Bk 2 k okVxL(x, ), the matrix will be used to obtain the step
AXk, A1.) k and hence X

k+l
X
k + AXk and /.)k+l /.)k + A/)k. The means for obtaining AXk,

A V
k are described in this section and 3. In order to continue the iterative process,

Bk must be updated to Bk+l. We use the BFGS update formula to update Bk at each
iteration. The BFGS update is due to Broyden [2], Fletcher [10], Goldfarb [12], and
Shanno [26]. If yk VL(xk+I, vk+I) VL(xk, vk+l) and (yk) 7"AXk > 0, then

(2.4) Bk+l Bk +
ykyk" BkAxkAxkBk
ykT"Axk AxkrBkAxk

Otherwise Bk+l B k. If Bk is symmetric and positive definite then so is Bk+l. Moreover,
if Bk+l is given by (2.4) it satisfies the secant equation Bk+lxk--’yk. The matrix
V2xL(x*, v*) is not necessarily positive definite but the use of positive definite updates
guarantees, as will be seen later, descent directions and will not interfere with fast
local convergence. In the implementation we will store and work with the Cholesky
decomposition of the matrix, Bk- ckckT.

We can now present the quasi-Newton (Q.N.) step for this problem:

(2.5) Axk k ( Bk
Ark} ----( )-IVL(xk, vk)=-- Vh(xk)r Vh(xk))-’(Vf(xk)+Vh(xk)vk)0 h(xk)

Quasi-Newton algorithms usually employ a line search to determine an 0_-< a k such
that xk+l= xk + okAxk, Ok+l-" I)

k dr. otkAvk satisfy a certain criterion (like a decrease of
a penalty function).

An equivalent way of computing the Q.N. step is to solve the quadratic program-
ming problem

min L(xk, vk)d-VxL(xk, vk)TAxd-1/2AxTBkAx,
Ax

(2.6)
s.t. h(xk)+Vh(xk)7"Ax=O.

Now Axk is the solution of (2.6) and Avk is the vector of Lagrange multipliers
corresponding to the linear constraints. The objective function in (2.6) may be looked
at as a quadratic approximation of the Lagrangian function with Lagrange multiplier
v k. The quadratic problem thus consists of minimizing this quadratic approximation
subject to the original constraints, linearized at the point x k.

3. The trust region algorithm. We first motivate our method and then provide the
details. In a trust region algorithm we have at each iteration a trust region sphere
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around the current point {xk + Ax: IIAxl] <-- rk} in which we trust the quadratic approxi-
mation of the function, or in our case the quadratic approximation to the Lagrangian
function as in (2.6). (The determination of rk will be discussed later in this section.)
An attempt to add a trust region to (2.6) results in the problem

min

(3.1) s.t.

vk r AX,L(xk, v k) + VxL(xk, AX +1/2AxTB k

h(x) + Vh(xk) TAX O,

and we can immediately observe a difficulty: If rk is too small, we may have {Ax: h(x) +
V h(xk)rAx 0} f3 {zx: I[Zkxll <- rk} G. Thus even the shortest step Ax that satisfies
h(xk)+Vh(xk)rzX =0 lies outside the trust region..We suggest therefore to change
the linear constraint in (3.1) into ah(xk)+Vh(xk)rAx=O where a depends on the
radius rk and is determined such that {Ax: ah(xk)+Vh(xk)rAx=O}f3
{a/: Ilax[I -< r} .

We now give more details on our method. In order to simplify the notations, we
omit the superscripts. Assume we are at the current point x with Lagrange multiplier
v. We take a Q-R decomposition of Vh(x) with column pivoting, i.e., find an orthogonal
matrix Q, a permutation matrix 11 and a nonsingular upper triangular m x rn matrix
T such that QVh(x)II=(). Recall that we have assumed in this section that Vh(x)
is of full rank for all x e N". We partition Q by Q (-), where O has rn rows.

Let Ax(h), Av(h) be computed in the following form:

(3.2) (Ax(h))=_( B+AI
Av(A) Vh(x) r Vh(x))-l(Vxt(X,0 a(X)h(x)]’

where

a(A)=min max

and A chosen so that I[Ax(A)II <-- r. Theorem 3.2 summarizes the characteristics of Ax(A),
Av(A) as a function of A in the new model. We first need the following lemma:

LEMMA 3.1. For any integer p > O, matrix B and g ", we have that A p. (B +
AI)-P" g- g as A o.

The proof of this lemma is straightforward.
THEOREM 3.2. Consider (Ax(A),Av(A)) as defined in (3.2). Then Ax(A) and

(v + Av(A )) do not depend on v for all A >= O. When A tends to infinity, v + Av(A)- 3+-=
[Vh(x)rVh(x)]-[h(x)-Vh(x)rVf(x)] and Ax(A)-(1/A)VL(x,+)-O. Finally,
II x( )ll is a monotonically decreasing function of A >-O.

Proof By multiplying

B + I Vh(x))Vh(x) r 0

on both sides of (3.2) we obtain

(3.3)

(3.4)

(B+AI)Ax+Vh(x)Av+VxL(x, v)=0,

Vh(x)rAx + ce(A)h(x) O.

From (3.3) we get

(3.5) Ax -(B + AI)-lVxL(x, v+ Av).
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From (3.4) and (3.5) we have

(3.6) Av=[h(x)T(B+hI)-h(x)]-l[a(,) h(x)-h(x)T(B+hI)-,L(x, v)],

which implies that

(3.7) v+Av=[Th(x)T(B+hI)-lTh(x)]-l[a(h) h(x)-Th(x)’(B+hI)-lTf(x)].
Thus Ax(h) and (v+Av(h)) do not depend on v for all h _->0. To get the asymptotic
behavior of Ax(h), we use Lemma 3.1. Note that when h is large, a(h)= 1/h. Thus
when h tends to infinity,

v+ AV(A [hVh(x)r(B + hI)-lVh(x)]-l[h(x)- hVh(x)r(B + hI)-lVf(x)]

[Vh(x)rVh(x)]-l[h(x)-Vh(x)rVf(x)] +,
and from (3.5)

ax(h) =VxL(x, +).
A

The proof that [[Axll is monotonically decreasing to zero is straightforward but some-
what long. It is discussed here briefly. For a full proof see [31 ]. We obtain an expression
for (0/0h)(1/211Axll 2) and have to show that the derivative is negative for all h’s.

0 IIAxll- =-II(0B0r +hI)-3/20(Vf(x)-a(h)Bor)l]

+ a(h)a’(h)TOBQT(OBOT +
+ ’(h)[(h)U- UOBO(OBO + h)-0Vf(x)],

where = T-THTh(x).
Since a’(h)0 for all h’s, the first two lines have a nonpositive value. The last

line is trivially zero if a(h) 1. Otherwise a(h) [lull x IlOvf(x){/x/[{ implies that
the expression in brackets in the third line is nonnegative. This completes the proof.

One of the major diculties in constrained optimization is in deciding whether
(x+, v+) is a better approximation to the solution than (x, v). The Lagrangian
function L(x, v)=f(x)+ h(x)Tv cannot serve for this purpose because of the risk of
cycling. Instead we use the penalty function

(3.8) PL(x) =f() +
where the/xi’s are positive fixed constants that are called penalty coefficients.

Before stating the algorithm it is important to show that at each iteration there
will be a (radius small enough or) h > 0 large enough such that a penalty function of
the form of (3.8) (which will replace the Lagrangian in the algorithm in order to achieve
global convergence) is also decreased.

THEOREM 3.3. If (Ax, Av) is computed as in (3.2) and V L(x, +)# O, then there
exists h > 0 large enough such that L(x + Ax(h), v+ Av(h)) < L(x, v+ Av(h)). Further
assume that ti= 1,. ., m
(3.9) /z, > IE(v h(x)T7h(x))-(h(x) Vh(x)Vf(x))],l.
Then there exists h >0 large enough such that PL(x+ Ax(h)) < PL(x) where PL(x)=
f(x)+Y,[h,(x)[.

Proof We will use the asymptotic behavior of Ax, Av as established by Theorem
3.2. From Taylor’s theorem we have

h[L(x+hx, v+Av)-L(x, v+Av)]=hVxL(x+vhx, V+Zkv)Tfi,x for some ue(O.1).
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We now use Lemma 3.1 and the fact that V L(x, +) 0 implies VxL(x, +) 0 to obtain
that when h tends to infinity

h[L(x+Ax, v+Av)-L(x, v+Av)]-V,L(x, +)TVxL(X +)<0.

Next consider PL(x + Ax).

h[PL(x + Ax)- PL(x)]

AEf(x + Ax) -f(x) + Ym(lh,(x / zXx)l- Ih,(x)l)]

h [Vf(x) tax +1/2AxVVZf(x + vAx)Ax

+ /xi sign (hi(x))(Vhi(x)rAx+1/2AxrVZh(x+ vAx)Ax)
i:hi(x)O

+ E Izio’i(Vhi(x)TAx+1/2AxTV2hi(x+  ax)ax)l,
i’hi(x)=O 1

for some v [0, 1] and cr +/- 1. The sign of r is not important because as we shall
see, the third term tends to zero when tends to infinity. Thus

,[PL(x + Ax)- PL(x)]

,[Vf(x)Ax+1/2axVf(x+ vax)ax

+ y
i’hi(x)O

sign (h,(x))(-a(A)h,(x)+1/2AxrV2h,(x + vAx)Ax)

+ 2
i:hi(x)=O

txo’i(1/2AxrV2hi(x + vAx)Ax) ].
When h tends to infinity, A Ax--VL(x, +) and h. a(h)= 1. Thus

A[PL(x + Ax)- PL(x)]- -Vf(x) rV,L(x, +)- E tx, sign (h,(x))h,(x)
i:hi(x)#O

=-V,L(x, +)TV,L(x, +)- ,, (/x, sign (h,(x))-+,)h,(x),
i:hi(x)#O

and because the choice of/z’s in (3.9) is such that/z > I+il for all i- 1,..., m, the
last expression is negative and this completes the proof of the theorem.

We would like to emphasize two nice properties of this model:
a) When r is large enough, the full Q.N. step is taken and , 0. When r is very

small and as a consequence , is very large, Ax -(1/h)VL(x, f+) is a steepest descent
direction in minimizing L(x, f+). f+ as defined in Theorem 3.2 does not depend on B
and has been used in other algorithms for equality constrained optimization. (See e.g.
[30].)

b) If a bound on the right-hand side in (3.9) is known, then we can fix the
parameters ui in the penalty function and there is no need to change the/x’s in the
process of the convergence with the risk of cycling.

Here is our algorithm.

ALGORITHM i
Step 1" Start with x, v, r, B, k 1.
Step 2" k k + l.
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Step 3" Find A k (first try A k= 0) and AXk, AVk such that

(3.10)
Ark] Avk(A k) =-\Vh(xk) T a(Ak)h(xk)]

IIAx’ ll rk, A >_- o and A(llaxll- r o.

Step 4" Check if PL(xk+ Axk) < PL(xk). If not, reduce rk and return to Step 3.
(If a bound as in (3.9) is not known,/xi may be chosen by a method described in 5.)

Step 5: Check for convergence. If not achieved, continue.
Step 6" Compare the quadratic approximation of L with the value of the

Lagrangian function and its gradient at (xk 4- Axk, /)k 4- A)k) and accord-
ingly increase or decrease rk+l

Step 7" Compute yk=V,,L(xk+Axk, k+Avk)--VxL(xk, vk+Avk) and update
Bk+l= BFGS (Bk, AXk, yk).

Step 8" X
k+l

X
k "{- Axk., /)k+l /)k 4- Avg., return to Step 2.

4. Convergence properties. The global convergence theorem that appears in this
section assumes that the choice of Ak in Step 3 of Algorithm I is not such that
II(Ax k, AVk)II <= r k, but instead at each iteration A k is chosen to minimize the penalty
function PL(xk + Axk).

Thus we could restate Steps 3 and 4 of the algorithm as follows:
Find A k, Axk= Axk(A k) and Avk(A k) such that

(4.1) PL(xk + Axk(Ak))= min PL(xk + Axk(A)).
A:AO

(We will refer to this as "exact A-search.")
The following theorem which gives the global properties of the algorithm is similar

to [14, Thm. 3.2].
THEOREM 4.1. Assume Algorithm I is performed with exact A-search (4.1) and there

exist two positive numbers a, fl such that az rz <-_ z TBkz <= [32 TZ for each k and any z ".
Also assume that txi, i= 1,..., m satisfy inequality (3.9) at all points xk generated by
the algorithm and the set {x" f(x) + Y,lh,(x)l <f(x) + Y,[h,(x)[} is bounded. Then
the sequence {xk} remains bounded, and if is any accumulation point, h()=0 and
there exists a W" such that Vf(:) + Vh(:) 0.

l)k kProof. First observe that if Axk 0, then from Theorem 3.2 TxL(xk, 4- AV )--0
and h(xk) 0. That means that (x k, v k 4- Avk) satisfies the required conditions. Suppose
now that for all k, AXk O. From the algorithm we have for all k, PL(xk + Axk) < PL(xk).
Thus, because of the assumptions, {xk} is bounded and has an accumulation point .
Without loss of generality we may assume (by taking a subsequence) that xk--,
Bk- ff. ( exists and is positive definite because of the assumed existence of a,/3.)
Let A:(A), (t+ A(A)) be determined by (3.2) with , B replacing x and B.. (According
to Theorem 3.2, A(A) and (+A(A)) do not depend on .) Let be such that
PL(+A(A))=mina:x>=oPL(+A(A)). Let A=A() and (+A)=(+A()).

If A 0, then as above we see that VL(:, + A)= 0. If A 0, we will obtain
a contradiction. Our assumptions imply that Axk(t)- A. From Theorem 3.3 we can
conclude that PL(+ A) < PL(). Let /3 PL(+A) PL(). Since xk + Ax() -+ A(), it follows that for a sufficiently large k

(4.2) PL(x + Axk(X)) +/3 < PL().
2
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But PL(Y) < PL(xk+l) min:>__o PL(xk + Axk(A)) < PL(xk + Axk(.)) + ill2, which for
k large enough contradicts (4.2). This completes the proof of the theorem.

We now establish the local properties of the algorithm. We assume that
lim {(x k, vk)} {(X*, V*), a local solution, and that Axk 0 for all k. We will also
assume, for now, that V2xL(x*, v*) is a positive definite matrix. We will discuss the
other case at the end of this section. Another problem is that Algorithm I uses the-
penalty function PL(x) to decide in Step 4 whether to accept the step. This may
interfere with fast local convergence. In [4] an example is given which shows that even
when we are arbitrarily close to the solution, the use of the penalty function may
prevent superlinear convergence. Our way of handling this problem is to change slightly
the penalty function so that in a neighborhood of feasible points the regular Lagrangian
function L(x, v)=f(x)+h(x)Tv will replace the penalty function in Step 4. More
details appear in 5. We will still use the penalty function when the point is not in
the neighborhood of a feasible point in order to retain the global properties of the
algorithm.

Since the following discussion deals with what happens in a neighborhood of the
solution, we will refer to Algorithm II which represents an interpretation of Algorithm
I in which L(x, v) is used instead of the penalty function.

ALGORITHM II
Step 1" Start with x, v, r, B, k 1.
Step 2" k k + l.
Step 3 and
Step 4: Find rk such that if the step is computed according to (3.10)

(4.3) L(xk _.[_ AXk, )k _1_ Al)k) < L(Xk, vk _].. Ark).
)k(Try first rk II(k)-IVL(xk, )11, i.e., check whether the Q.N. step satis-

fies condition (4.3).)
Step 5: Check for convergence. If not achieved, continue.

/)k kStep 6" Compute yk VxL(xk + AXk, l.) k’nt- At) k) VxL(xk, d- Av and update
Bk+l BFGS (Bk, Axk, yk).

Step 7" xk+ xk + Axk’, v k+l vk + Avk. Return to Step 2.

We will show that there exist e >0, t>0 such that if IIx-x*[I < e, II(B)-l-
Vxt(x*, v*)-’ll < i (such a bound is equivalent to a bound on IIB-V2L(x*,
then the convergence is superlinear. The main tools for local convergence in uncon-
strained problems were established in [3]. Lemma 4.2 is proved there; (we replace the
unconstrained function with the Lagrangian function with a fixed Lagrange multiplier

Let M =[Vx,L(x,* v*)]1/. Define the matrix norm IIAII=IIMAMIIF where

D F /ij d 2ij.
We will also use the fact that there exists a constant r/> 0 such that for every

n x n matrix A

(4.4) IIAII, < IIAII.
LEMMA 4.2. Let (x*, v*) be a local solution. For all z , z2

[IVxL(z2, v*)-Vxt(Z l, t)*)-V2xxL(x*, v*)ll -< g(Zl z2) z2- gill

where (z’, z) max {]lz 1- x*ll, llz- x*ll}. Furthermore, if VL(x*, v*) is invertible,
there exist e>0 and p>0 such that (zl, z2)Ne implies that (1/p)llz2-zlll<
IlVxt(z2, v*)-VxL(z v*)ll ollz2- zlll.
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Another important result in the paper by Broyden, Dennis, and Mor6 is the
bounded deterioration of (the inverse of or) the Hessian approximations. Han [13]
and Tapia [29] observed that this result also applies to the constrained case.

THEOREM 4.3. There exist positive e and 6 such that if II(x, v) -(x*, v*)ll < and
II(B)-’ V z,‘L(x*, v*)- M < 6 and if (x+, v+) (x, v) (B)-V L(x, v) and B+

13
+BFGS (B, Ax, y) where y= V,L(x+, )-V,L(x, v+), then B+ is nonsingular and there

exist positive a, a, 43 such that

(4.5)

II(n+)- V = ,-t(x,) I1,
02--<N/1 "1-l20"((X V), (X+, v+))IIB-’-V2L(x*,

+((x,v)(x+,v+)),

where

II[B-’-VL(x*,
IIB-I--V=xL(x*, v*)-ll[ IIM-’Yll

and

((x, V), (x+, v+)) max {ll(x, )-(x*, *)11, II(x+, +)-(x*,
Lemma 4.2 and Theorem 4.3 can now be used to obtain the local results we need.

Since the following theorem is similar to theorems in 13] and [29], the proof is omitted.
A proof can be also found in Vardi [31].

THEOREM 4.4. There exist positive e and such that if II(x, v) -(x*, v*)l] < e and
II(n)-’ -V=xL(x*, V*) -1 I1<, then for all k, rk II(/’)-lVL(x’, v)ll is accepted. Fur-
thermore, if (x+, v+) (x, v) (/’)-lv L(x’, v) and B’+l BFGS (B’, Ax’, y’),

= * < 26for all k. Finally,then II(x+l, v+’)-(x*, v*)ll < and
II(x/l, v/l)-(x*, *)11 -< tll(x, o)-(x*, v*)ll for some t, 0< < so that {(x ’, vk)}
converges to (x*, v*) linearly.

THEOREM 4.5. There exist positive e and such that if II(x, v) (x*, v*)ll < and
II(n)-’ -V%xt(X*, v*)-’ll, < and Algorithm II is followed, then superlinear conver-
gence in { (ok)} is achieved.

Proof Let e and be those in Theorem 4.4. Then we obtain II(x
I)
k I)*(x*, v*)ll <-- tll(x, )-(x*, )11 for some 0<t< and conclude that Yk= [l(x, )-

(x*, v*)ll < oe. The next step is to use (4.5) to show that

(see [6]). We now use the inequality

=0,

II[B-VZL(x*, *)3Axll < III- B’VL(x*v*)-lll IlY’-VL(x*, *)Axll
ilaxll ilaxll

IIBII II[(B)-’ V =xxL(x v ]Y

to obtain

(4.6) lim
II[n- VxL(x*, v*)]Ax

0.
Ilmxll
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This further implies

lim

(4.7)
L(x v*) Vh(x* ( Axk

Vh(x) 0 Vh(x*) 0 \av]
lim 0.
k--

Dennis and Mor6 [6] showed that this implies

lim
II(x/"/)k+l)--(X*’ v*)ll--0,

II(x,)-(x*,
i.e., superlinear convergence in {(x k, vk)} is achieved.

To conclude this section we discuss what happens when V2xxL(x*, v*) is not a
positive definite matrix. In such a case we cannot talk about II(B)--V2xL(x*, v*)-lll < as in Theorem 4.3 because there may not be any positive definite
B which satisfies this inequality. Recall our assumption" Vz s.t.Vh(x*)rz=O,
zrVL(x*, v*)>0; in terms of the Q,R decomposition Q*Vh(x*)*=(ro) and the

O*partition Q*= [0.], this assumption is equivalent to the statement"

t*VxL(x*, v*)0*r is a positive definite matrix.

Now the question becomes whether it is enough to assume that (dd- (do fom
the Q-R decomposition of Vh(x)) is close to (t*VL(x*, v*)t*r)- in order to get
fast local convergences. Powell [24] made an important step towards answering the
question positively. He showed that

2

lim
IIO[n-Vxe(x v*)]0axll-0,

implies two-step superlinear convergence

lim
IIx/’- x*ll_ 0.

_oo x-i
5. Implementation. Algorithm I is an iterative one. Steps 3-8 describe what hap-

pens in each specific iteration and will be discussed here in more detail. Since we
confine ourselves in this chapter to one specific iteration, we omit the superscripts.

We use the Cholesky decomposition of B, B CC 7- where C is a lower triangular
matrix. All the computations from this point on will be done in terms of this matrix
C. In each iteration instead of deriving Bk+ from Bk, we will derive C/l from C.

Initialization. x does not have to be feasible. It is interesting to notice that if
some of the constraints, say h,..., hp, p-< m, are linear, then even if hi(x) 0 for
some =< _-< p, as soon as the radius of the trust region is large enough so that a (A)
(say at the kth iteration), then hi(xk q- AXk) hi(xk) A- V hi(xk) TAxk 0 for 1,. ., p
and the linear constraints are satisfied for the rest of the iterative process, v is set by
the program to [Vh(x)rVh(x)]-l[h(x)-Vh(x)rVf(x)]; it plays only a role in the
initialization of/xi’s and in the initialization of CO which is assigned the value of the
identity matrix multiplied by 0.1. IIVL(x, v)ll/r.
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The Q-R decomposition of Vh(x) and its use. We now clarify what we do when
Vh(x) is not of full rank. Recall from (3.4) that Ax has to satisfy a(A)h(x)+
Vh(x)TAx 0. At each iteration we need a Q-R decomposition of V h(x), i.e., we have
to find an orthogonal matrix, Q, a permutation matrix II and an k matrix T with
tj=0 for i>j, where /=rank (Vh(x)), such that QVh(x)II=(o). (If l= k, then is
square and upper triangular.) The decomposition is obtained with the use of Househol-
der transformations. At the end of the process, if fewer than k Householder transforma-
tions are used to obtain T, it means that Vh(x) was not of full rank. The equations
that correspond to the remaining columns will be ignored. (In the computer program
we decide to stop the process if the norm of each remaining column is less than
(machine eps). [111")

Partition T into T T, S] where T is an upper triangular matrix; also partition
Q into Q [-] where ( has rows and let H [I, I=I] where I has columns. With
these notations we solve the reduced systems a(h )1Th(x) + ITVh(x) TAx 0 to obtain

(5.1) QAx=-a(A)h,

where/7= T-TIlTh(x).
Step 3 of the algorithm. Suppose we are in a new iteration at the point x with a

corresponding Lagrange multiplier v and we have already observed f(x), h(x), Vf(x)
and Vh(x), and have performed a Q-R decomposition of V h(x). Also available are a
lower triangular C such that CCT= B is an approximation of the Hessian of the
Lagrangian at (x, v) and r, the radius of the trust region. In order to compute (Ax, Av),
let us first multiply (3.3) by from the left to obtain

O(B+hI)(OO+OO)ax+ O. Vh(x). av+O" VxL(x, v):0.

Observing that Oh(x)= 0, we then get

(5.2) Oax(X)=-(OBO+hI)-’O(Vf(x)+BO(Oax)).
In order to take advantage of (5.2), we need a decomposition of the matrix 0BOL
This is best done in the following way: Define M 0C so that MM= OBOL Obtain
a Q-R decomposition of M" PME =[] where P is an n x n ohogonal matrix,
an (n l) x (n l) permutation matrix and R an (n l) x (n l) upper triangular matrix
(recall l= rank (Vh(x))). Paition P into P [] where P has (n l) rows. Thus we have

(5.3) (OC)= M= fiRE
and

(5.4) OBOT=ERTRET, OBOT + hi ,(RTR + AI)E T.
At this point we have to decide whether we want to compute Ax(0). We check

whether the distance between x and H -= {x + Ax: ITh(x) + -I TV h(x) TAx 0} is not
greater than r in which case Ax(0) is obviously too long and we need A > 1. The
distance between x and H is II ll T- fi hll.

If r > Ilhl], we compute Ax(0) as follows:

ax(O) O (Oax(O)) + O (OAx(O)),
where QAx(O) is -h from (5.1). Defining

b(A C-Vf(x) + cTOT QAx(A )) C-Vf(x) a(A )CrOr,
we get from (5.2), (5.3) and (5.4)

(5.6) Ax(0) --OTg OTER-’Pb(O).
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If now []Ax(0)[[ < r, we can find v+Av(0) (see below) and go to the next step.
Otherwise we have to find h > 0 such that ]lAx(A)[[ r. We can get an upper bound
on the value of h in the following way: From (5.1) and (5.2)

Ax(h --OT((BO + hi)-’ O(f(x) + BOT(QAx)) + (T((Ax).

Thus r IIAxll-<(1/h )[[ OVf(x)+ a(h)QB(r/[[ + a(h)II/[[. This implies by straightfor-
ward analysis the following bound on h

(5.7a) h_-<u=

otherwise.

A lower bound on h can also be derived:

> 1o [ if r_--<  11,
5.7b

[0 otherwise.

Define now the function b(A)= IIAx(A)ll=-r; we want to find a zero of this
function. From Theorem 3.2 we know that b(A) is continuous and decreases monotoni-
cally to -r. b may not be always convex but it usually is. These characteristics of
lead to an iterative process that was first suggested by Hebden [16] and Mor6 [19] for
the nonlinear least square problem. In this process we set

M+,=M_(A)+r &(hj)
r

(M is the jth iterate) and check that h+ (lJ+l, U+l) where j+l, Uj+l are the best
lower and upper bounds known for h. In practice this method is quickly convergent
and requires on average less than 2 A-iterations per radius to obtain h such that
[4(h)l < 0.125" r.

By using (5.3), (5.4) and (5.5) we can rewrite (5.2) as

(Ax(A) -Y(RTR + AI)-IR r/Sb (A)

or

R T R (zT(AX(A)) ’/I 0
(5.8) AI/2I A/2I A

Thus we have a linear least squares problem and in order to solve it we have to obtain
a Q-R decomposition of the matrix (2). This is done with the use of Givens
transformations to get a 2(n 1) x 2(n 1) orthogonal matrix W and an (n l) x (n l)
upper triangular R such that

W(AI/R2I) =(0)
(We do not have to store W; the computations that have to be done with W are done
while the decomposition is taking place.) Thus

(5.9) RTR+AI=r.
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Partition W into () where if" has (n- l) rows. Thus

(5.10)

These decompositions enable us to compute Ax(A) and (O/dA)IIAx(X)II and thus
to obtain b(A IIAx(X)ll- r and b’(A (1/llAx(X)ll). (/X)llax(X)ll =, For com-
plete details see [31]. We also obtain

v+ Av -I T-’ ([(B + AI)Ax + Vf(x)].

This is the unique solution to (3.3) if Vh(x) is of full rank in which case fit is square
and invertible. When Vh(x) is not of full rank, we must decide on appropriate Lagrange
multipliers for the constraints that have been ignored. The specific choice of (v + A v)
above sets the multipliers for these constraints to zero which means that they will have
no influence on B/.

Steps 4-6 of the algorithm. In Step 4 of Algorithm I. we use the penalty function
PL(x) =f(x)+,txilhi(x)l to decide whether the step is acceptable.

We now describe how the/xi’s are set in PL(x). We recall from Theorem 3.3 that
in order to guarantee descent of this penalty function, we need

, > I/I- I[v h(xj) 7"V h(xJ)]-l( h(x) Vh(x) 7"Vf(x))], I,
for i= 1,..., m, for all j 0, 1,....

In the program/zi’s are initialized to/x i= 2. Ivl. Then at each iteration we update the
/x’s by

[2. I,1 if 2. I!1 -> ,
(5.11) ({+2. I!1) if 2. I!1 < {.
As we commented in 4, we modify the definition of PL(x) so that when the x’s are
getting feasible, the regular Lagrangian function will replace the penalty function so
that, as our local theorems show, q-superlinear convergence can result. This is done
by gradually changing each of the tzi’s into a Lagrange multiplier when the point is
in a neighborhood where the corresponding constraint is satisfied.

We have three tests that are designed to check three stopping criteria: the f
convergence test, VL convergence test and x convergence test. In the program the user
is asked to specify e O, /2 >- O, e3 -> O, E4 O, and funmin, a lower bound on the
function.

f convergence test--stop if f(x)- funmin < el and
VL convergence test--stop if IIVL(x, )11 < = and IIh(x)ll < e.
x convergence test--stop if IIAII < (llxll / ).

The test problems were run with e= 10-8, e2--i0-5, e3--10-, e4-" 10-6 on an
IBM/370.

As for Step 6, the program has a series of tests which is designed to compare the
quadratic approximations of the Lagrangian function L with L itself. The new radius
is set to

according to the fit. At times, when the reduction in the Lagrangian value is much
better than expected, we may recompute a step with rk= 2rk before moving to the
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next iteration. Also if PL(xk+ AXk) PL(xk), we will take rk= 1/2r k and recompute the
step. For more details on assessing the quadratic model see Vardi [31].

Step 7 of the algorithm. In (2.4) we gave the BFGS formula for updating the
matrix B to obtain the matrix B+. We now want to use the Cholesky decomposition
of B, B CC r. Dennis and Schnabel [8] recommend the following method: obtain a
Q-R decomposition of the-matrix (J+)r=Cr+v(y-Cv)T/vru where v=
(yrs/srBs)/2Crs by using Jacobi rotations and taking advantage of the fact
that (j+)r is a rank-one correction of an upper triangular matrix. Thus we get
(j+)r= Q+(C+) r. C+ is then the Cholesky decomposition of the BFGS update of B+

i.e., B/= C+C+r. Of course if y rs-<_ 0, J/ is not well defined and we just take C/= C.
The program also contains a subroutine that obtains a rough estimate of the

condition number of B by checking the ratio between the largest diagonal element
and the smallest diagonal element of C. If the ratio is too high, the column that contains
the low diagonal element is changed. In general the trust region model may prevent
some of the numerical problems because the conditions number of the matrix (0B0r +
AI).as a function of A is monotonically decreasing.

Testing the program. The program has been tested extensively with test problems
that appear in the literature. (See Himmelblau [17], Miele et al. [18], Solow [27] and
Wright [32].) In order to check the global convergence, we added for each of these
problems starting points that were much further from the known solution than the
suggested starting points; convergence was always obtained.

For all problems we used r= 1.
We give the results of the following problems"
Problem 1: f(x) (x x)2 + (x- x3)4,

h,(x) x + xix22 -t- x- 3.
f(x*) =0.

Problem 2" f(x)= lO00--X--2X22--X--XIX2--XlX3,
h,(x)= x2 + x2+ x-25,
h(x) =8x, + 14x+Tx3- 56.
f(x*) =961.71517.

Problem 3: f(x) -(x +x+ x3 7)3,
ht(x) x2t + xZz+ x-2,
hz(x)=xz-exp(x).
f(x*) 117.0622.

Problem 4: f(x) exp (xxz- x]),
hl(X) xZ +x- 2,
h2(x XIX2 X "Jr" X3.

f(x*) =0.16550395.
Problem 5" f(x) -xx4+ (x 1)+ (x: x3)4 + (x3 ):,

h(x) xx+sin (X4-- X3) --4
2 4h2(x) x+x3x4 10.

Two local solutions: f(x*)--4.496926; f(x*)= 1.9046409.
Problem 6: f(x) XlXEXaX4Xs,

h (x) x+ x22 +x+ x2 +x O,
h2(x) x2x 5x4x5,
h3(x) x3 + x3 + 1.
f(x*) -2.9197004.

Problem 7: f(x) exp (xx2x3x4xs),
constraints as in problem 6.
f(x*) 0.053949848 exp (-2.9197004).

Problem 8: f(x) (x )2 + (x x2)2 + (xz- x3) + (x3 x4)4 + (x4- xs)4,
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hl(X x + x22 -t- x33 2 3/,
h2(x) x2 x+ x4 -t- 2 2/,
h3(x)=xlx5-2.
Five local solutions: f(x*) =0.029310831; f(x*) 27.871905;

f(x*) 44.022072; f(x*) 52.90258; f(x*) 607.03552.
Problem 9: f(x) (x ))‘ + (x x)‘))‘ + (x3 1))‘ + (x4- )4_ (x5 )6,

h(x) xZx4+ sin (X4 xs) 2.8284,
4 2h)‘(x) x2+ x3x4-9.4142.

f(x*) =0.24150237.
Problem 10: f(x)=(x- 1)Z+(Xl-Xz)Z+(x-x3)4,

hi(x) Xl(1 + x2) +x- 8.2426.
f(x*) =0.032567769.

Problem 11: f(x) (x x2))‘ + (x2 + x3 2) )‘ + (x4- )2 + (x5 1)2,
hi(x) Xl + 3x)‘,
h2(x x + x4 2x5,
h3(x) x)‘- x5.
f(x*) =4.0930233.

Problem 12" f(x)=4x+2x+2x-33x + 16x)‘-24x3,
h(x)=2x+3x-7,
h2(x) x -t- 4x1- 11.
f(x*) -99.555041.

TEST RESULTS

No. of No. of
Problem number Starting point function eval. gradient eval.

(2.4, .5, O) 28 24
(10,-10, 10) 78 50

2 (-5, -10, 5) 18 11
2 (10, 10, 10) 20 14
2 (50, 50, 50) 23 15
3 (0, 1, 1) 11 8
3 (-10, 10, 10) 34 21
4 (-1, l, l) 9 8
4 (-10, 10, 10) 22 15
5 (3.159,3.162,0,1) 19 16
5 (10, 10, 10, 10) 47 35
6 (-1, 1.5,2,-1,-2) 18 10
6 (-10, 10, 10,-10,-10) 25 11
7 (-2,2,2,-1,-1) 8 8
7 (-1,-1,-1,-1,-1) 14 10
8 (-1,3,-0.5,-2,-3) 16 13
8 (-1, 2, 1, -2, -2) 15 12
8 (, , , , ) 3 1
8 (2,2,2,2,2) 13 10
8 (10, 10, 10, 10, 10) 25 21
8 (-2, -2, -2, -2, -2) 45 22
9 (2,2,2,2,2) 16 14
9 (10, 10, 10, 10, 10) 91 64
10 (1.5, 1.5, 1.5) 13 11
10 (10, 10, 10) 20 15
11 (2,2,2,2,2) 13 9
11 (10, 10, 10, 10, 10) 16 11
12 (4, -3, 4) 11 10
12 (10, -10, 10) 15 11
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