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Akrrct-ThreeJayer sandwich beams, madc c
sandwiched between them, are considcrcd as da
of motion with complex coefficients of a sandwi
numerically for a large variety of boundary cor
optimal dcsign program, An equality oonsti"in"
obtain oprimal design of damping sandwhich ber
usc ot the progr&m is demonstratcd by solving h

INTRODUCTION.

Structural vibration is a major design problem and in most cases designers try to minimizevibration amplitudes in order to eliminate the danger of fatiguc r"iLr". The hazard isusually greater in thin walled structures where low modes occur ai relatively low frequencies.one method of decreasing vibration amplitudes of such structures is to use layered visco-elastic materials of high damping properties in such a way, that the stiffness of the structureremains high enough to support the load, whereas the viscoelastic material provides the
le9essary damping characteristics. The first analysis of such a structure was done by Oberst(1952) on an elastic beam with a viscoelastic layer bonded to one or two of its faces. Theefficiency of that structure, howwer, was not high be"ause thc viscoelastic mat,erial wassubjected to low tension/compression strains along the beam's axis and the shear wasrelatively low, thus inhibiting the damping ptop"tty of the viscoelastic material from beingrealized- A better design is to constrain itre viscoilastic layer b"t;; stiff clastic tayeri
loryins it to undergo high shear deformations that are accompanied with high energy rorres.such a design was analyzed by Kerwin (1959), and this was iotto*ej uy a rurg" number ofpapers dealing with different aspects of the problem. Some reyiews of the wort< on vibrationcontrol with viscoeiastic materials have been written by Nakra itszC, rsatl and Nelson(1s77).

This paper deals with optimal design of three-layer (not necessarily symmctrical)sandwich beams made of two elastic outer layers and a viscoelastic layer sandwichedbetween them. Some of the previous work on similar beams is discussed here.
- Molt of the papers_on this subjectend up with an cquation of motion of the sixthorder, with complex coefficients (Ditaranto, t 96s ; Ditaranto and Btasingame, 1967 ; Meadand Markus, 1969), which is then solved for certain boundary conaitions. The solution isquite complex and only in 1978 did Rao (1978) manage to get a numcrical solution for awide range of boundary conditions.

_ The damping oflthe.beam (7) is generaily protted as a function of (the rear part of) ashear parameter g given by

a _ G 20 +iq )L2 b(E /  |  +  hA 3)-  
H2E1A1E3A3

for different materials and cross-sectionat configuration designated by a geometric par-
ameter { where

' f This work is part of an M'Sc. thesis of the sccond author, at Technion-Israel Institute of Technology.
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Fig' I . Variation of sandwich beam darnping with shear parametcr for various ls.

Y = (d2 I DJE tAt E 3A3l (E tA | + h4).

o.t I to
$cor ps€mster

(2)

A typical plot of the dampiug of a cantilever beam vibrating in its first mode is shown in
Fig. l. It is clear that the dampiug of the sandwich beam goJs through a maximum, but it
is not obvious how to get this maximum damping. Thf rate depindence of the shear
modulus of the viscoelastic material complicates even more the iroblem of selecting a
material and cross-sectional geornetry for maximum damping.

The purpose of the present work is to give the designei an automated tool that will
enable him to select the proper materials and cross-sectional geometry of the beam such
that the modal damping is a maximum under predetermined deslgn consiraints. The present
program handles a variety ofboundary couditions and design c6nstruiot, and can be used
as an interactive program.

- T. next section prese'nts a short description of the model, the equation of motion,
boundary conditions, and the type of solution sought. This is foitowed iy a section on the
numerical solution and optimal design. In the last section two design concepts are iUustrated
using the present optimization program.

GOVBRNING EQUATIONS OF THE PROBLEM

The equation of rnotion for transverse vibrations and the solution type, follows the
derivation given by Mead and Markus (1969). Consider a sandwich beam made of three
layers: two elastic face-plates with thicknesses r/1 and Ir3 and moduli E1 andE3, respec-
tively, and a viscoelastic_core of thickness ry'2, density jr, and complex shear rnodulus
G - Gz(l ti42)- The width of the beam is D, and its tengh i. The assumptions that lead to
the equation of motion are :

(a) the elastic face-plates carry only longitudinal stresses;
(b) the core carries only shear stresses and is rnodelled as a linear viscoelastic material;
(c) transverse strains are negrectcd in both core and face-prates:
(d) the layers are perfectly bonded;
(e) the longitudinal and rotatory inertia arc neglected.

The equation of motion for the transverse displacement w(x, l) resulting from an externally
time-dependent loading 4(x, r) is
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where i and lare normalized length and time

* : xll and f = tlto; Uo : (mL41Dr\rrz1

m is the mass of the bearn per unit lcngth and D, is the total ffexural rigidity

D,: b(EEl+&Hllrz.

Mead and Markus then considered harmonic motion

w(*,f) = W,(E)T(a,fl

produoed by harmonically varying load, q, which is proportionat

(4)

(s)

to theztl modeW,(*)

q(i,f) : PmW,(i) e'@t'l.

substitution of eqns (5) and (6) in eqn (3) leads to rhe two equations

f+cf!+vt)T: Ptf, e6,

and

(6)

(7)

(8)wI'-s0+nwy -d*(1*i7") (WI-sW,) = 0

where the second time derivative of T is denoted by f ; the x-wise derivatives are denoted
\y v, w,".,wv'; and al is the normalized angular frequency of the applied load
(rE : alle).

The first step toward the..lesign of an optimal sandwich beam is to develop a numerical
lcheqe for determining the values of the (normalized) natural frequencies, r1,, andmodal
danrping, 4n, of a given_ sandwich bcam subjected to various UounOary conditions. The
second step is to establish some design constraints and develop a numerical algorithm that
determines the dimensions and mechanical properties of the layers such that ihe damping
of the sandwich beam is maximum.

Thc general solution ofeqn (8) is ofthe form

6

W,: L A* er*t
t - l

which leads to the auxiliary equation for each of the six complex roots ln

(e)
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Table l. Basic bouadary conditions

Detailed boundary conditions
Boundary
coadition Notation

Frce

Frcc-riveted

Pinucd

Pinncd-rivet€d

Clanped-allows
long. sliding

Clampcd

Sliding

Sliding-riveted

F,

P

P,

cu

c
S

s,

w\  =0  wN-walT+ in , ) :o

wt\ =o wv-wt6:e+i i l :o

L | / - 0  W t r = 0

rY=0 Wtv-g( l+Y) f r i -O

W = 0  V t = O

W - 0  W t - 0

Wt =0 ww-gYt| l t-wa],( l+i4") - 0
Wt  =0  Wt \  =0

W-g(l+Y) l t t l l
_wt6:( t  + i4) :0

W-g(t+y')wtl
-w6rl!+ii l=0

W v  - 0

Wv -gYWttt - I4tlal\ +iq) = 0

W\ -gYl|ttt - g

ll/v -gYwttt = g

wv-gQ+Y)lYt t t  =o

Wv  =0

1*-sQ+nA|-61(l +i?") (*"-d :0.

The boundary conditions that have been considered are summarized in Table l, whereas
Table 2 shows the combinations of these boundary conditions that are available in our
program. Substitution of the general solution (9) in the boundary conditions of a givcn
beam leads to a set of six hornogeneous conplex equations in l*, \4rith coeffcients that are
functions of the (yet unknown) X* 6n and 4r. Using the relations bctween the roots of
cubic equations (Mead and Markus, 1970), and considering eqn (9) to be a cubic in ),|, one
can exprcss its roots as a function of, say, I,r. From eqn (9) the natural frequency and
modal damping can also be expressed as a function of l1

(r3 0 +i4) = ri, (1 - Ysl (8, - d).

Thus, the deierminant derived from the boundary conditions is expressed as a function of
a single complex root ,,u r. This detenninant is solved numerically, foltowing the procedure
developed by Rao (1977), by using an improved iteration procedure with complex double
precision, The starting value of uto 1 is that of a corresponding Euler beam.

AUTOMATED OPTIMAL DESIGN

TS:_p,r,ocedure ouflined i$ thg previous section is suitable for calculating natural
{requencies and damping of a glygr k4rrr. This, however, is not the problern facing a design
Engineer who wants to design a structure (beam) for maximurn da:nping, What hc is facing
is a number of design constraints derived from considerations such as: weight, rigidity,
total thickness, material properties, erc. Within the boundary of the constraints he has to

Table 2. Boundary conditioas available in
presetrt program

Right

(10)

(l 1)

I

J

4
5
6

8
9

l0
l t

F
F.
P
R
c
P
R
P
F
F,
F,

c
c
c
c
c
P,
P.
P
F
F
F,
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select the appropdate cross,sectional geometry and materials such thatmaximum.

I03I

the damping is

paraTeter at the peak. Once g is known, the
material can be calculated from eqn (1).

we feel that the geometrical parameter is not a good design constraint because it hasno apparcnt engineering meaning. In facr, by eliminiting td;;;;.r or";;;;;l];with higher damping values. we Jso fecl ttrailnstraints of iueq*rity "."-ore appropriatcto use in engineering design.
In the present work we use the algorit

constrained minimization. The constrainlts ir
ar6 converted in the nurnerical program to th
constraints in our program are given by nom
wth respect to those of an equivalent homog

L* ( Zup, where lZ*o and W6_ are thepT:y 
9",".* respectively; and W1*and tA",

r the weight ratio.
* ( Doo, where D*6and D6"- are the flexural

(c) Height constraint: F/r.* S Ho*lilw-(fuo, where.I/,,, and rls*, are the totalcross-sectional heights of the two beami.
(d) Elastic layer thickness constraint: Hr ro* ̂( H rlH*u ( I/rup, where f/, is the thick-ness of one of the elastic layers of the sanowicit u**. rlJtrtictoT"'or rrr" other is takento be equal to I15*-.

'. H2rc,4 HzlH,o,^ < .Ar"o, where fI2 is the

, I.io. This coustraint is introduced into our

H*:H:Tl,ff ;$J.",fJ"ff ffil ii
Zto be equal to or larger than lr.r".

The calculation procedure is indicated in Fig. 2. The problem is defined in the ,.MAIN,,

:e continues until a sandwich beam is found
s all the imposed constraints.

RESULTS AND DISCUSSION

To demonstrate the use of this program it was applied to two dcsign problems. Design1 : replace a given homogeneous uelm-ty a three-laycr ,;;;"1 beam subject to a givenset of constraints,-and Design 2: add a constrained viscoelastic layer to the given homo-geneous beam, subject to a given set of constraints. In both cases thc goal is to achieve
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Fig. 2. Schernatic description of calculation prooedurc.

maximum damping of the clamped-free sandwich bearn. The values of the homogeneous
aluminium beam are:

length,

height,

Young's modulus,

density,

I :  180mrn

I/uor - 5mm

Eb."' : 7l GPa

Pb*:2700kgmm-l

The elastic layers of the sandwich beam are made of the same material, and have the same
lengtl and width, as the homogeneous beam. The viscoelastic core material is Neoprene
CR-602, characterized by rate-dependent shear rnodulus and dampiug

Gz(f) : 1.007 x l0-3/+ 1.386 MPa
tlz(f) :1.608 x lo-4f +0.2564

where / is ttre frequency in hertz. The constraints for each of the two designs were chosen
arbitrarily and do not limit the use of the program in any way,

Design 1 : the following constraints apply:

7'a 0.8 < I/."d/I/b.." < 2

1.b 0.8 <r,"!d/Dbco. ( 1.2

l 'e 0.24< HzlHuo .

When thefirst guess of the thickness was Hr:9 firrn, I/3= 7 mm, arrdH2: I mm, the
program ran through 18 iterations before reaching the optimal design. Final and some

Table 3. Intermediatc and fitral values in design I ofsandwich beam

Gcomatry (mm)
Ileration

No.
rrd D:rd
I/tor DunII3H2Hl

Damping Frequcncy
,t (Hz)

0
1

6
I

t a

l 4
t 8

0

5.37
3.948
3.948
3.670
3.684
3.684

I
0.91
o.364
0.366
1.199
1.200
I.200

1

3.58
3.958
3.953
3.669
3.684
3.684

3.4
r.992
t.654
l .653
t.708
t. '1t4
1.714

8.576
t.637
0.988
0.986
0.790
0.800
0.800

0.0452
0.0695
0.0881
0.0881
0.0820
0.0818
0.0818

220
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Table 4. Intermediatc and final values in design 2 ofsandwich bcam

Geomctry (mm)
ibs
/{t*.E3H2Hl

Itcration
No.

Wa,a

E
Damping Frequency

tt (Hz)

:
J

l.459
t.470
1.809
1.810
1.810

2.088
t.379
r.400
r.498
1.499
r.500

0.0597
0.0s72
0.0601
0.0522
0.0s22
0.0523

intermediate varues are shown in Tabre 3. The gfoll convergence of the pro$am waschecked by changing the values of the fust guess. The final results *.tr ti, same in all cases

;:i,,:f 
onlv difference was th€ number oiirerations p,i"";;;;;hid'the optinal desigr

when some of the constraints are relaxed, the number of iterations is reduced con-siderably and the value of the damping is increased, as can uc ,""oio iaite 3 ifwe eriminate,say, constraint 1 'c. In that case we see that after six iterations tfre aarnpiig i, "fr""av frigh.;than the final value of 0.0818, and the other two constrainh are met.
The value of the geometrical parameter I' for this oesign is t: 5.27. Anattempt toadd a constrainl of Y >- 15 to design I led to conflicting roortt.iit" ihi"h pr"u.oted theconvergence of the solution- The maximum value of rinat is compatible with the otherconstraints is about f = 8.8, and the associated optimal dr"rpiil;;: 0.0765, which islower than the optimal damping of the original aesign r. Tlr;;;t-ir";l'vlu"* of these twocases as well as the value of design 2 are shown in Fig. L
Design 2: The constraints in this example were chosen to be

2.a 1.05< Itl*d/prlb* < 1.5

2-b 1.3 < r{*"d/}/b.* <2.1
2.c 0.2(I/r/I/u"".

2.d 0.6<I/r/.r/b*.

Final and some intermediatp values are shown in Table 4. The value of the geornetricalparameter for this design is r: f, and anattempt to increase this value (whib Leeping theremaining constraints unchanged) would lead to a lower value of the modal darnping, asin the previous design examplc. It should be clear that it would have been prohibitively
difficult to solve the two design exampres rvithout an optimization program.

CONCLUSIONS

- to automated optimization numerical program has been developed for desigrring
thre+layer sandwich beams.for maximum durp-g. The program u*aio a rarge varietyof boundary conditions-and inequality constraints, and ii cJnverges rathcr rapidly evenwhel thc initial (guessed) values are very far from the final optimal-values. The constraints
are based on.design rcquirements, and not on the geometrical parameter r, which has uo
apparent engineering significance. Although the use of the program has been demonstrated
here with two examples only, *"ny *ote cases have been s-olved which included other
boundary conditions, different materials for the constraining elastic layer and other com-
binations of constraints.
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1.527
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t.u7
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J

0.767
0.675
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