2. Equivalence of Sets. The Power of a Set

2.1. Finite and infinite sets. The set of all vertices of a given polyhedron,
the set of all prime numbers less than a given number, and the set of all
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residents of New York City (at a given time) have a certain property in
common, namely, each set has a definite number of elements which can be
found in principle, if not in practice. Accordingly, these sets are all said to
be finite. Clearly, we can be sure that a set is finite without knowing the
number of elements in it. On the other hand, the set of all positive integers,
the set of all points on the line, the set of all circles in the plane, and the
set of all polynomials with rational coefficients have a different property
in common, namely, if we remove one element from each set, then remove
two elements, three elements, and so on, there will still be elements left in
the set at each stage. Accordingly, sets of this kind are said to be infinite.

Given two finite sets, we can always decide whether or not they have the
same number of elements, and if not, we can always determine which set
has more elements than the other. It is natural to ask whether the same is
true of infinite sets. In other words, does it make sense to ask, for example,
whether there are more circles in the plane than rational points on the line,
or more functions defined in the interval [0, 1] than lines in space? As will
soon be apparent, questions of this kind can indeed be answered.

To compare two finite sets 4 and B, we can count the number of elements
in each set and then compare the two numbers, but alternatively, we can try
to blish a correspond between (the el -of)-4-and B,
i.e., a correspondence such that each element in 4 corresponds to one and
only one element in B and vice verse. It is clear that a one-to-one corre-
spondence between two finite sets can be set up if and only if the two sets
have the same number of elements. For example, to ascertain whether or
not the number of students in an assembly is the same as the number of
seats in the auditorium, there is no need to count the number of students
and the number of seats. We need merely observe whether or not there are
empty seats or students with no place to sit down. If the students can all
be seated with no empty seats left, i.e., if there is a one-to-one correspondence
between the set of students and the set of seats, then these two sets obviously
have the same number of elements. The important point here is that the
first method (counting elements) works only for finite sets, while the second
method (sglrn(ﬁg up a one-to-one correspondence) works for infinite sets as.
well as for finite sets.

2.2. Countable sets. The simplest infinite set is the set Z,. of all positive
integers. An infinite set is called countable if its elements can be put in one-to-
one correspondence with those of Z,. In other words, a countable set is a
set whose elements can be numbered a,, a,, . . . , @,, . . . . By an uncountable
set we mean, of course, an infinite set which is not countable.

‘We now give some examples of countable sets:

Example 1. The set Z of all integers, positive, negative or zero, is
countable. In fact, we can set up the following one-to-one correspondence
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between Z and the set Z, of all positive integers:

0, =1, 1, =2, 2,...

L 2 3 & Suas
More explicitly, we associate the nonnegative integer n > 0 with the odd
number 27 + 1, and the negative integer n < 0 with the even number 2 |n|,
ie.,

ne2n+1 if n>0,

ne>2|nl if n<0
(the symbol < denotes a one-to-one correspondence).

Example 2. The set of all positive even numbers is countable, as shown
by the obvious correspondence n <> 2n.

Example 3. The set 2,4,8,...,2" ... of powers of 2 is countable, as
shown by the obvious correspondence 7 <> 2".

Example 4. The set Q of all rational numbers is countable. To see this,
we first note that every rational number « can be written as a fraction p/g,
g > 0 in lowest terms with a positive denominator. Call the sum |p| -+ g the
“height”” of the rational number «. For example,

1-0
is the only rational number of height 0,
—~1 1
E
are the only rational numbers of height 2,
-2 =1 1 2
Wit aroa

are the only rational numbers of height 3, and so on. We can now arrange
all rational numbers in order of increasing height (with the numerators
increasing in each set of rational numbers of the same height). In other
words, we first count the rational numbers of height 1, then those of height
2 (suitably arranged), those of height 3, and so on. In this way, we assign
every rational number a unique positive integer, i.e., we set up a one-to-one
correspondence between the set Q of all rational numbers and the set Z,
of all positive integers.

Next we prove some elementary theorems involving countable sets:
THEOREM 1. Every subset of a countable set is countable.

Proof. Let A be couniél;lé; with elements @, a,, . . . , and let B be a
subset of 4. Among the elements @, s, . . . , let Gys Gy - - - be those in
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the set B. If the set of numbers ny, n,, . . . has a largest number, then
B is finite. Otherwise B is countable (consider the correspondence
i—ay) 1

THEOREM 2. The union of a finite or countable number of countable
sets Ay, Ay, . . . is itself countable.

Proof. We can assume that no two of the sets A4, 4,,... have
elements in common, since otherwise we could consider the sets

Ay, Ay — Ay, Ay — (A U 4y), ..

instead, which are countable by Theorem 1 and have the same union as
the original sets. Suppose we write the elements of 4, 4, ... in the
form of an infinite table
an Gz Gy
dn Gy Gy
Q31 G2 Qg3
Gy Gy Ay

(&)

where the elements of the set 4, appear in the first row, the elements of
the set 4, appear in the second row, and so on. We now count all the
elements in (1) “diagonally,” i.e., first we choose ay,, then ay,, then ay,,
and so on, moving in the way shown in the following table:®

Ay > Gy @3> Gy .-

'd Ve

Ay Gp Gy Gy

1l 2 w

Gn Gm G Gy 2
v

Tt is clear that this procedure associates a unique number to each element
in each of the sets A, 4,,..., thereby establishing a one-to-one
correspondence between the union of the sets 4;, A4,, ... and the set
Z, of all positive integers. [

THEOREM 3. Every infinite set has a countable subset.

° Discuss the obvious modifications of (1) and (2) in the case of only a finite number
of sets Ay, A, . .
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Proof. Let M be an infinite set and a, any element of M. Being in-
finite, M contains an element g, distinct from a,, an element g, distinct
from both @, and a,, and so on. Continuing this process (which can
never terminate due to a “shortage” of elements, since M is infinite),
we get a countable subset

A={a,a5...,8,...}
of the set M. [

Remark. Theorem 3 shows that countable sets are the “smallest” infinite
sets. The question of whether there exist uncountable (infinite) sets will be
considered below.

2.3. Equivalence of sets. We arrived at the notion of a countable set M
by considering one-to-one correspondences between M and the set Z, of all
positive integers. More generally, we can consider one-to-one correspondences
between any two sets M and N:

DEFINITION. Two sets M and N are said to be equivalent (written
sponde between the ele of

M and the elements of N.
The concept of equivalence® is applicable to both finite and infinite sets.
Two finite sets are equivalent if and only if they have the same number of
elements. We can now define a countable set as a set equivalent to the set
Z, of all positive integers. It is clear that two sets which are equivalent to a
third set are equivalent to each other, and in particular that any two countable
sets are equivalent.

Example 1. The sets of points in any two
closed intervals [a, b] and [c, d] are equiv-
alent, and Figure 5 shows how to set up a
one-to-one correspondence between them.
Here two points p and ¢ correspond to each
other if and only if they lie on the same ray
emanating from the point O in which the
extensions of the line segments ac and bd
intersect.

Example 2. The set of all points z in the FIGURE 5
complex plane is equivalent to the set of all

¢ Not to be confused with our previous use of the word in the phrase *‘equivalence
relation.” However, note that set equivalence is an equivalence relation in the sense of
Sec. 1.4, being obviously reflexive, symmetric and transitive. Hence any family of sets
can be partitioned into classes of equivalent sets.
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points o on a sphere. In fact, a one-to-
one correspondence z <> o between the
4 points of the two sets can be established
by using stereographic projection, as
shown in Figure 6 (O is the north pole

of the sphere).
Example 3. The set of all points x
FIGURE 6 in the open unit interval (0, 1) is equiv-
alent to the set of all points y on the

whole real line. For example, the formula

y= larctanx-%— i
kg 2
establishes a one-to-one correspondence between these two sets.

The last example and the examples in Sec. 2.2 show that an infinite set
is sometimes equivalent to one of its proper subsets. For example, there are
“as many”’ positive integers as integers of arbitrary sign, there are “‘as many”’
points in the interval (0, 1) as on the whole real line, and so on. This fact
is characteristic of all infinite sets (and can be used to define such sets), as
shown by

THEOREM 4. Every infinite set is equivalent to one of its proper subsets.
Proof. According to Theorem 3, any infinite set M contains a
countable subset. Let this subset be
A= {ay, agyois 5 By = s
and partition 4 into two countable subsets
A ={a1, 05, 05...}, Ay={aya0,...}.

Obviously, we can establish a one-to-one correspondence between the
countable sets 4 and A, (merely let a,<> a,,_;). This correspondence
can be extended to a one-to-one correspondence between the sets 4 U
(M —A)=M and 4, U (M — A) = M — A, by simply assigning x
element xe M — A But M — A, is a proper subset of

2.4. Uncountability of the real Several ples of countabl

sets were given in Sec. 2.2, and many more examples of such sets could be
given. In fact, according to Theorem 2, the union of a finite or countable

number of countable sets is itself countable. It is now natural to ask whether

there exist infinite sets which are uncountable. The existence of such sets
is shown by
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THEOREM 5. The set of real numbers in the closed unit interval [0, 1] is
uncountable.

Proof. Suppose we have somehow managed to count some or all of
the real numbers in [0, 1], arranging them in a list

3

where a;, is the kth digit in the decimal expansion of the number a,.
Consider the decimal

B=0bby...b,... o)

constructed as follows: For b, choose any digit (from 0 to 9) different
from ay,, for b, any digit different from @y, and so on, and in general
for b, any digit different from a,,,,. Then the decimal (4) cannot coincide
with any decimal in the list (3). In fact, B differs from a; in at least the
first digit, from a, in at least the second digit, and so on, since in general
b, # a,, for all n. Thus no list of real numbers in the interval [0, 1]
can include all the real numbers in [0, 1].

The above argument must be refined slightly since certain numbers,
namely those of the form p/107 can be written as decimals in two ways,
either with an infinite run of zeros or an infinite run of nines. For
example,

$=+=05000...=04999...,

so that the fact that two decimals are distinct does not necessarily mean
that they represent distinct real numbers. However, this difficulty
disappears if in constructing 8, we require that @ contain neither zeros
nor nines, for example by setting b, =2 if a,, =1 and b, =1 if
o # L.

Thus the set [0, 1] is uncountable. Other examples of uncountable sets

equivalent to [0, 1] are

1) The set of points in any closed interval [a, b];

2) The set of points on the real line;

3) The set of points in any open interval (a, b);

4) The set of all points in the plane or in space;

5) The set of all points on a sphere or inside a sphere;

6) The set of all lines in the plane;

7) The set of all continuous real functions of one or several variables.
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The fact that the sets 1) and 2) are equivalent to [0, 1]is proved as in Examples
1 and 3, pp. 13 and 14, while the fact that the sets 3)-7) are equivalent
to [0, 1] is best proved indirectly (cf. Problems 7 and 9).

2.5. The power of a set. Given any two sets M and N, suppose M and N
are equivalent. Then M and N are said to have the same power. Roughly
speaking, “power” is something shared by equivalent sets. If M and N are
finite, then M and N have the same number of elements, and the concept
of the power of a set reduces to the usual notion of the number of elements
in a set. The power of the set Z, of all positive integers, and hence the power
of any countable set, is denoted by the symbol X, read “aleph null.” A
set equivalent to the set of real numbers in the interval [0, 1], and hence to
the set of all real numbers, is said to have the power of the continuum,
denoted by ¢ (or often by R).

For the powers of finite sets, i.e., for the positive integers, we have the
notions of “greater than™ and “less than,” as well as the notion of equality.
‘We now show how these concepts are extended to the case of infinite sets.

Let 4 and B be any two sets, with powers m(4) and m(B), respectively.
If 4 is equivalent to B, then m(4) = m(B) by definition. If 4 is equivalent
to a subset of B and if no subset of 4 is equivalent to B, then, by analogy
with the finite case, it is natural to regard m(4) as less than m(B) or m(B) as
greater than m(4). Logically, however, there are two further possibilities:

a) B has a subset equivalent to 4, and 4 has a subset equivalent to B;
b) 4 and B are not equivalent, and neither has a subset equivalent to the
other.

In case a), 4 and B are equivalent and hence have the same power, as shown
by the Cantor-Bernstein theorem (Theorem 7 below). Case b) would obvi-
ously show the existence of powers that cannot be compared, but it follows
from the well-ordering theorem (see Sec. 3.7) that this case is actually impos-
sible. Therefore, taking both of these theorems on faith, we see that any two
sets A and B either have the same power or else satisfy one of the rela-
tions m(A4) < m(B) or m(4) > m(B). For example, it is clear that X, < ¢
(why?).

Remark. The very deep problem of the existence of powers between ¥,
and ¢ is touched upon in Sec. 3.9. As a rule, however, the infinite sets
encountered in analysis are either countable or else have the power of the
continuum.

We have already noted that countable sets are the “smallest” infinite
sets. It has also been shown that there are infinite sets of power greater
than that of a countable set, namely sets with the power of the continuum.
Tt is natural to ask whether there are infinite sets of power greater than that
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of the continuum or, more generally, whether there is a “largest” power.
These questions are answered by

THEOREM 6. Given any set M, let M be the set whose elements are all
possible subsets of M. Then the power of M is greater than the power of
the original set M.

Proof. Clearly, the power i of the set .# cannot be less than the power
m of the original set M, since the “single-element subsets™ (or “single-
tons”) of M form a subset of A equivalent to M. Thus we need only

show thatm and p do not coincide. Suppose a one-to-one correspond
a4, b« B,...
has been blished between the el a,b,...of M and certain

elements 4, B, ... of A (i.e., certain subsets of M). Then 4, B, . ..
do not exhaust all the elements of #, i.e., all the subsets of M. To see
this, let X be the set of elements of M which do not belong to their
“associated subsets.”” More exactly, if <> 4 we assign a to X if a ¢ 4,
but notif a € 4. Clearly, X is a subset of M and hence an element of 4.
Suppose there is an element x € M such that x«> X, and consider
whether or not x belongs to X. Suppose x ¢ X. Then x € X, since, by
definition, X contains every element not contained in its associated
subset. On the other hand, suppose x ¢ X. Then x € X, since X con-
sists precisely of those elements which do not belong to their associated
subsets. In any event, the element x corresponding to the subset X must
simultaneously belong to X and not belong to X. But this is impossible!
It follows that there is no such element x. Therefore no one-to-one cor-
respondenlce can be established between the sets M and ., i.e.,
m# .

. Thus, given any set M, there is a set .# of larger power, a set A#* of
still larger power, and so on indefinitely. In particular, there is no set of
“largest” power.

2.6. The Cantor-Bernstein theorem. Next we prove an important theorem
already used in the preceding section:

THEOREM 7 (Cantor-Bernstein). Given any two sets A and B, suppose
A contains a subset A, equivalent to B, while B contains a subset B,
equivalent to A. Then A and B are equivalent.

) Proof. By hypothesis, there is a one-to-one function f mapping A
into B, and a one-to-one function g mapping B into 4,:

f(4)=B, < B, gB) =4, < A.
Therefore

Ay = gf () = g(f(4) = g(By)
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is a subset of 4, equivalent to all of 4. Similarly,
By = fg(B) = f(g(B) = f ()

is a subset of B, equivalent to B. Let A be the subset of 4 i.nto Whllch
the mapping gf carries the set 4, and let 4, be the su.bset of4 into which
gf carries A;. More generally, let 4, be the set into which 4, (k=
1,2,...) is carried by gf. Then clearly

A A, D A= DAy D gy D70+
Setting
o
D=MN4,
k=1

we can represent A as the following union of pairwise disjoint sets:

A=A—A) V(4 —A) V(4 — AU+
U (4 — Ay) V- U D (5)

Similarly, we can write 4; in the form
A=A —-A)U @A, — AU U (A — A U uUD. (6)
Clearly, (5) and (6) can be rewritten as
A=DUMUN, (59

A4, =DUMUN, (6)
where
M= (4, — A) U (Ag—A) U+,
N=@A—-A)VU,—4s) V-,
Ny=(dy—A) U (A — A5) V-~

But A — A, is equivalent to 4, — A5 (the formelt is carried into the latter
by the one-to-one function gf), A, — A is equivalent to 4, — 45, and
so on. Therefore N is equivalent to N;. It follows from the represen-
tations (5') and (6') that a one-to-one correspondence can be set up
between the sets 4 and A4,. But A4, is equivalent to B, by hypothesis.
Therefore A is equivalent to B. |

Remark. Here we can even ““afford the unnecessary luxury™ of explicitly
writing down a one-to-one function carrying 4 into B, i.e.,
g4 a) if aeDUM,
a) =
= f(a) if aeDUN

(see Figure 7).
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FIGURE 7

Problem 1. Prove that a set with an uncountable subset is itself un-
countable.

Problem 2. Let M be any infinite set and A any countable set. Prove that
M~MUA.
Problem 3. Prove that each of the following sets is countable:

a) The set of all numbers with two distinct decimal expansions (like
0.5000. . . and 0.4999 . . .);
b) The set of all rational points in the plane (i.e., points with rational

coordinates);
c) The set of all rational intervals (i.e., intervals with rational end points);
d) The set of all pol ials with rational coeffici

Problem 4. A number o is called algebraic if it is a root of a polynomial
equation with rational coefficients. Prove that the set of all algebraic numbers
is countable.

Problem 5. Prove the of bly many #r dental num-
bers, i.e., numbers which are not algebraic.

Hint. Use Theorems 2 and 5.

Problem 6. Prove that the set of all real functions (more generally,
functions taking values in a set containing at least two el defined
on a set M is of power greater than the power of M. In particular, prove
that the power of the set of all real functions (continuous and discontinuous)
defined in the interval [0, 1] is greater than c.

Hint. Use the fact that the set of all characteristic functions (i.e., functions
taking only the values 0 and 1) on M is equivalent to the set of all subsets
of M.

Problem 7. Give an indirect proof of the equivalence of the closed interval
[a, 6], the open interval (a, 5) and the half-open interval [a, b) or (a, b].

Hint. Use Theorem 7.
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