[image: image1.png]The Legendre polynomials satisfy

by(x) = By (x) =nPi(x) 0
(1=X)Pi(x) =nP,_ (x) - nxPy(x) )

where P, (x) is the Legendre polynomial of degree n. Show that the Legendre polynomials satisfy Legendre’s
differenential equation, i.., (1—-*)y"(x) = 21y'(x) + n(n+ 1)y(x) = 0.




Taking the derivative of equation 4,
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From equation 3, we see that 
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.  Substituting this in gives
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Thus the Legendre polynomials satisfy Legendre’s equation.

This is a previous problem and answer :Legendre's differential equation, i.e. , (1-x^2)y''(x) - 2xy'(x) + n(n+1)y(x)=0. Find all solutions to Legendre's differential equation assuming solutions of the form y(x) = x^r.
The equation is 
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The solution of the equation has the form 
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, then we have
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Then we have
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We have the following cases:

Case 1: 
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 can be any real number, 
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Case 2: 
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Therefore, the solution is 
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Case 3: For other value of 
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Legendre's differential equation, i.e. , (1-x^2)y''(x) - 2xy'(x) + n(n+1)y(x)=0. Find all solutions to Legendre's differential equation assuming solutions of the form y(x) = Pr (x). The  Pr (x) is the same as Pn (x).  The answer that I have is on the next page.

This is the problem in Question with an answer that is not completely correct. On this problem I know from the previous problems that the Legendre polynomials satisfy the DE. It is a second order DE. Usually these have two linearly independent solutions. Are these the only polynomials that satisfy the DE, or is there another set, linearly independent of the ones we found?

[image: image40.png]Assuming a solution of the form y = % | a,2™, we obtain
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Expanding and collecting like terms (and adjusting indices for convenience) we get

> mim = aga™ 2 =" m(m = apa™ =23 maga™ +n(n+1)Y_ apa™ =0
fre} T T g

or

3" ((m+1)(m +2)amsa + [~m(m — 1) = 2m +n(n + 1)]an) = 0
0
and this implies that each term must vanish, hence
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The first couple of coefficients are
_ nlnt1) _ (n-2(m+3)
=" U= @

Hence, the ‘even’ coefficients are

%:(71),"[(,172m+2)...(n72)1;][(:2;)1!)(”3)...+(n+2m71)]

Similarly, the odd coefficients are
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Hence the power series solution to Legendre’s equation has been found.
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