EXAMPLE 6 Sketch the graph of the function $f(x) = x^{2/3}(6-x)^{1/3}$.

SOLUTION You can use the differentiation rules to check that the first two derivatives are

$$f'(x) = \frac{4 - x}{x^{1/3}(6 - x)^{2/3}} \qquad f''(x) = \frac{-8}{x^{4/3}(6 - x)^{5/3}}$$

Since f'(x) = 0 when x = 4 and f'(x) does not exist when x = 0 or x = 6, the critical numbers are 0, 4, and 6.

4 - x	$x^{1/3}$	$(6-x)^{2/3}$	f'(x)	f
1-54	_	+	-	decreasing on $(-\infty, 0)$
+	+	+	+	increasing on $(0, 4)$
-	+	+	_	decreasing on (4, 6)
-	+	+	-	decreasing on $(6, \infty)$
	4 - x + +	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ - + +	+ - + + + +

To find the local extreme values we use the First Derivative Test. Since f' changes from negative to positive at 0, f(0) = 0 is a local minimum. Since f' changes from positive to negative at 4, $f(4) = 2^{5/3}$ is a local maximum. The sign of f' does not change at 6, so there is no minimum or maximum there. (The Second Derivative Test could be used at 4 but not at 0 or 6 since f'' does not exist at either of these numbers.)

Looking at the expression for f''(x) and noting that $x^{4/3} \ge 0$ for all x, we have f''(x) < 0 for x < 0 and for 0 < x < 6 and f''(x) > 0 for x > 6. So f is concave downward on $(-\infty, 0)$ and (0, 6) and concave upward on $(6, \infty)$, and the only inflection point is (6, 0). The graph is sketched in Figure 11. Note that the curve has vertical tangents at (0, 0) and (6, 0) because $|f'(x)| \to \infty$ as $x \to 0$ and as $x \to 6$.

■ Try reproducing the graph in Figure 11 with a graphing calculator or computer. Some machines produce the complete graph, some produce only the portion to the right of the y-axis, and some produce only the portion between x = 0 and x = 6. An equivalent expression that gives the correct graph is

$$y = (x^2)^{1/3} \cdot \frac{6-x}{|6-x|} |6-x|^{1/3}$$

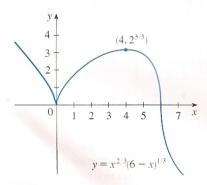


FIGURE 11

4.3 EXERCISES

1-8 =

- (a) Find the intervals on which f is increasing or decreasing.
- (b) Find the local maximum and minimum values of f.
- (c) Find the intervals of concavity and the inflection points.

1.
$$f(x) = x^3 - 12x + 1$$

$$(2.)$$
 $f(x) = x^4 - 4x - 1$

3.
$$f(x) = x - 2\sin x$$
, $0 < x < 3\pi$

4.
$$f(x) = \frac{x^2}{x^2 + 3}$$

5.
$$f(x) = xe^{x}$$

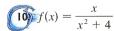
6.
$$f(x) = x^2 e^x$$

7.
$$f(x) = (\ln x)/\sqrt{x}$$

$$3. \ f(x) = x \ln x$$

9–10 Find the local maximum and minimum values of f using both the First and Second Derivative Tests. Which method do you prefer?

9.
$$f(x) = x + \sqrt{1 - x}$$



- II. Suppose f'' is continuous on $(-\infty, \infty)$.
 - (a) If f'(2) = 0 and f''(2) = -5, what can you say about f?
 - (b) If f'(6) = 0 and f''(6) = 0, what can you say about f?
- 12. (a) Find the critical numbers of $f(x) = x^4(x-1)^3$.
 - (b) What does the Second Derivative Test tell you about the behavior of *f* at these critical numbers?
 - (c) What does the First Derivative Test tell you?