Pythagorean Triples

A "Pythagorean Triple" is a set of three numbers a,b,c such that a²+b²=c².  Pythagorus proved that the sides of a right triangle have this relationship, then went crazy after discovering that the sides of a right triangle aren't always rational. 

At first sight, it appears that this is a fairly dull topic -- there are lots of integer solutions to the Diophantine (named after Diophantus, 3rd century A.D. Greek mathematician of Alexandria) equation a²+b²=c², such as 3,4,5; and 5,12,13.  Big deal. 

Oh, look -- one of the numbers is a multiple of 4 and the other two are odd.  It turns out that's always the case when the triple has no common factor (a primitive triple).  Why is that?  Interesting... 

And check this out -- not only is c² the sum of two squares, so is c.  What?!  Yes, it's true.  The average of the two odd numbers is one of the two squares.  Take 3,4,5 -- the average of the two odd numbers is 4, which is one of the two squares that adds up to 5.  Half of the difference of the two odd numbers is the other square to form the sum, 5.  Come on -- admit it.  There's more to Pythagorean Triples than you ever expected! 

In this section, we will explore some of the interesting facts relating to Pythagorean Triples.  One of the most interesting areas is the "Infinite Descent" which is a style of proof in which we start with the smallest number with a certain property, and then prove that there is a smaller number with that property -- therefore there is really no number with that property.  The fact that the big number in a Pythagorean Triple is itself a sum of two squares is often a key to such proofs.


Infinite Descent
"Infinite Descent" is a way of proving theorems involving integers.  Sometimes this type of proof is called "Infinite Regression".  Using this tactic, a proof begins by supposing that some integers exist with certain properties, and then proceeds to find smaller (in absolute value) integers with the same properties.  Such a thing can't go on for ever, because there is a smallest (in absolute value) integer, namely zero.  Herein lies the contradiction.

In an "Infinite Descent" proof, you first assume that a set of numbers with a certain property exists.  Then you find another set of numbers with the same property that's smaller in some specific way than the set of numbers.  If you assume the first set of numbers is minimal, then just one iteration of this descent is enough to prove by contradiction that there is no number with that certain property, but the method is called "Infinite" Descent because it shows more than just a contradiction; it shows that there are no smallest numbers with the given property.   That is, the fact that the descent is infinite affords you the luxury of not needing to assume minimality in the first place.

A simple proof using this tactic shows that the square root of 2 is irrational.

Let q be the square root of 2. That is, q is the positive number such that q2 = 2.
Suppose positive integers m and n exist such that m/n = q.
q(m-n) = qm-qn = q2n-qn = 2n-m, so (2n-m)/(m-n) = q
Since q is less than two, m is less than twice n, and it follows that m-n is smaller than n.
So whenever two positive integers m and n exist such that m/n = q, it follows that two smaller positive integers (2n-m) and (m-n) exist in the same ratio as m and n.
Thus there are no smallest positive integers with the given ratio, a contradiction. 

As a matter of fact, this proof can be generalized to show that the square root of N is irrational, as long as N isn't a square.  It works by showing that if m/n = q, where q^2 = N, and x = floor(q) < q, then

q(m-xn) = qm-qxn = q^2n - qxn = Nn-xm, so (Nn-xm)/(m-xn) = q,
and since m-xn is the remainder of integer division of m by n, m-xn is smaller than n, but larger than zero.

so we have the infinite descent we wanted: if m/n = q, then so does (Nn-xm)/(m-xn) = q, and the latter are smaller numbers.
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