3.1 EXERCISES

- 1. (a) Write an equation that defines the exponential function with base a > 0.
 - (b) What is the domain of this function?
 - (c) If $a \neq 1$, what is the range of this function?
 - (d) Sketch the general shape of the graph of the exponential function for each of the following cases.
 - (i) a > 1
- (ii) a = 1
- (iii) 0 < a < 1
- **2.** (a) How is the number e defined?
 - (b) What is an approximate value for e?
 - (c) What is the natural exponential function?
- ₹ 3-6 Graph the given functions on a common screen. How are these graphs related?

3.
$$y = 2^x$$
, $y = e^x$, $y = 5^x$, $y = 20^x$

4.
$$y = e^x$$
, $y = e^{-x}$, $y = 8^x$, $y = 8^{-x}$

5.
$$y = 3^x$$
, $y = 10^x$, $y = (\frac{1}{3})^x$, $y = (\frac{1}{10})^x$

6.
$$y = 0.9^x$$
, $y = 0.6^x$, $y = 0.3^x$, $y = 0.1^x$

7-12 • Make a rough sketch of the graph of the function. Do not use a calculator. Just use the graphs given in Figures 3 and 9 and, if necessary, the transformations of Section 1.2.

7.
$$y = 4^x - 3$$

8.
$$y = 4^{x-3}$$

9.
$$y = -2^{-x}$$

10.
$$y = 1 + 2e^x$$

11.
$$y = 1 - \frac{1}{2}e^{-x}$$

$$\widehat{\mathbf{12.}} y = 2(1 - e^x)$$

- 13. Starting with the graph of $y = e^x$, write the equation of the graph that results from
 - (a) shifting 2 units downward
 - (b) shifting 2 units to the right
 - (c) reflecting about the x-axis
 - (d) reflecting about the y-axis
 - (e) reflecting about the x-axis and then about the y-axis
- 14. Starting with the graph of $y = e^x$, find the equation of the graph that results from
 - (a) reflecting about the line y = 4
 - (b) reflecting about the line x = 2
- 15-16 Find the domain of each function.

15. (a)
$$f(x) = \frac{1}{1 + e^x}$$

(b)
$$f(x) = \frac{1}{1 - e^x}$$

$$\widehat{\mathbf{16}}(\mathbf{a}) \ g(t) = \sin(e^{-t})$$

(a)
$$g(t) = \sin(e^{-t})$$
 (b) $g(t) = \sqrt{1 - 2^t}$

17–18 Find the exponential function $f(x) = Ca^x$ whose graph is given.

17.

18.

- 19. Suppose the graphs of $f(x) = x^2$ and $g(x) = 2^x$ are drawn on a coordinate grid where the unit of measurement is 1 inch. Show that, at a distance 2 ft to the right of the origin, the height of the graph of f is 48 ft but the height of the graph of g is about 265 mi.
- \mathbb{R} 20. Compare the rates of growth of the functions $f(x) = x^5$ and $q(x) = 5^x$ by graphing both functions in several viewing rectangles. Find all points of intersection of the graphs correct to one decimal place.
- \nearrow 21. Compare the functions $f(x) = x^{10}$ and $g(x) = e^x$ by graphing both f and g in several viewing rectangles. When does the graph of g finally surpass the graph of f?
- \cong 22. Use a graph to estimate the values of x such that $e^x > 1,000,000,000$.
 - 23-30 Find the limit.

24.
$$\lim_{x \to \infty} e^{-x^2}$$

25.
$$\lim_{x \to \infty} \frac{e^{3x} - e^{-3x}}{e^{3x} + e^{-3x}}$$

26.
$$\lim_{x \to \infty} \frac{2 + 10^x}{3 - 10^x}$$

27.
$$\lim_{x \to 2^{+}} e^{3/(2-x)}$$

28.
$$\lim_{x \to 2^{-}} e^{3/(2-x)}$$

29.
$$\lim (e^{-2x} \cos x)$$

$$\lim_{x\to(\pi/2)^+} e^{\tan}$$

31. If you graph the function

$$f(x) = \frac{1 - e^{1/x}}{1 + e^{1/x}}$$

you'll see that f appears to be an odd function. Prove it.

22. Graph several members of the family of functions

$$f(x) = \frac{1}{1 + ae^{bx}}$$

where a > 0. How does the graph change when b changes? How does it change when a changes?