$$\Omega = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

- (1) Show that it is unitary.
- (2) Show that its eigenvalues are $e^{i\theta}$ and $e^{-i\theta}$.
- (3) Find the corresponding eigenvectors; show that they are orthogonal.
- (4) Verify that $U^{\dagger}\Omega U =$ (diagonal matrix), where U is the matrix of eigenvectors of Ω .

Exercise 1.8.6* (1) We have seen that the determinant of a matrix is unchanged under a unitary change of basis. Argue now that

det
$$\Omega$$
 = product of eigenvalues of $\Omega = \prod_{i=1}^{n} \omega_i$

for a Hermitian or unitary Ω .

(2) Using the invariance of the trace under the same transformation, show that

$$\operatorname{Tr} \Omega = \sum_{i=1}^{n} \omega_{i}$$

Exercise 1.8.7. By using the results on the trace and determinant from the last problem, show that the eigenvalues of the matrix

$$\Omega = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

are 3 and -1. Verify this by explicit computation. Note that the Hermitian nature of the matrix is an essential ingredient.