Regular Tessellations in the Euclidean Plane, on the Sphere, and in the Hyperbolic Plan
Introduction. The purpose of this article is to give an overview of the theory and results on tessellations of three types of Riemann surfaces: the Euclidean plane, the sphere and the hyperbolic plane. More general Riemann surfaces may be considered, for example toruses, but the theory is by far better developed, and understandable, in the cases presented hereafter. 
Roughly speaking, a tessellation of a space is a pattern which, repeated infinitely many times, fills the space without overlaps or gaps
. Tessellations are probably familiar to the non-mathematical audience because of their aesthetical implications: magnificent examples are the Islamic art in the ‘Alhambra’ palace, in Grenada, Spain, or the paintings of the famous Dutch artist M.C.Escher.
From a mathematical point of view, tessellations are pictorial representations of orbit spaces, corresponding to actions of groups on topological spaces. These can be of physical interest, for example the action on the hyperbolic plane, defined in §3, occurs in the theory of general relativity. 

1. Tessellations of the Euclidean plane. Basic definitions.
Definition A tessellation, or tiling, of the Euclidean plane, is a disjoint covering of the plane by plane figures. In more down-to-earth terms, this means that:

· Every point in the plane is contained in one of the figures
· The figures are pair-wise disjoint

The tessellation is regular if all the figures are congruent polygons.
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 all the tessellations of the plane: 
· how many ‘distinct’ tessellations exist?
· can we find an explicit rule to construct all the tessellations? 
The symmetries of a tiling play a key role, as in any other classification result in mathematics. By a symmetry, we mean any transformation T of the plane such that the image of the tessellation under T is still a tessellation of the same type. The easiest example to consider is the following:

Example: the Euclidean plane R2 is covered by the disjoint union of quadrilaterals
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and this tiling is clearly invariant under the translations T(x,y)=(x+1,y), T’(x,y)=(x,y+1). This particular example is also invariant under rotations by multiples of 
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. Of course, it is the only tiling invariant under these transformations. 
Before continuing our discussion on classes of tessellations, we recall the isometries of the Euclidean plane:
1. Translations: the symmetries of the form 
[image: image3.wmf]u

v

v

+

a

, for a fixed vector u;
2. Rotations: the symmetries 
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3. Reflections: the symmetries 
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is a fixed vector and < , > is the scalar product. 

By composition, these three types of linear transformations generate the group Isom of isometries of
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the plane. We can ask the following question: given a subgroup H<Isom, can we find all the tilings invariant under the action of H? We will see in the next sub-section that the answer is known when H is the so-called crystallographic group.

1.2 The crystallographic group

Definition: a subgroup H of Isom is called crystallographic if: (1) it is discrete; (2) it contains two translations corresponding to linearly independent vectors.
‘Discrete’ is a topological assumption: we put on H the induced topology, as a subset of the topological group of the invertible matrices. In mathematical terms, the  discreteness means that H has a fundamental domain D with positive area, that is:
 (a) every point of the plane can be moved to D by applying an element of H;
 (b) two points in D cannot be moved to each other by the action of H.
 Loosely speaking, a fundamental domain is the smallest pattern in the tiling. The fundamental result in the theory is the following theorem:
Theorem: there are exactly seventeen crystallographic groups.

We won’t prove this theorem, we will merely try to explain the underlying ideas. The proof of the theorem is constructive: we know how to describe precisely each group in the classification. These groups are labeled as follows:
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In this notation, the number occurring in the middle can be 1, 2, 3, 4, or 6 and is the highest order of a rotation in the group: 1 means that there are no rotational symmetries, 2 means that there is a rotation with 
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, but there are no rotations with smaller angle, and so on. The easiest part of the
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proof of the theorem is that the smallest angle which occurs is 
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 The first letter in the labeling can be p or c and describes the fundamental domain of the group. The last two symbols can be 1, m or g and describe the reflections: 1 means no reflections, m means mirror reflections, g means glide reflections (composition of a reflection and a translation along the same axis).
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1.3 Some examples. The tiling of the example in §1 corresponds to a crystallographic group of type p4gm, because it has a square fundamental domain, it has rotations of highest order 4 and it has 
[image: image10]
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2. Tessellations of the sphere. Here, the situation is quite different with respect to the plane. In fact, the sphere is a compact topological space; this means that from every topological cover of the sphere we can extract a finite sub-cover. Therefore the tessellations we are interested in, have only finitely many tiles. To begin with, we recall that there are only five regular polyhedra, respectively with 4, 6, 8, 12, 20 faces. The regular polyhedron with 20 facets is called icosahedron and it is represented below.
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                      Fig 4
oriented line passing through O, P. The image of the polyhedron on the sphere is then a regular tessellation. The image of a face of the polyhedron is a ‘spherical polyhedron’, whose edges are geodesic lines, in the sense of Riemann geometry. In this way, we obtain five regular tessellations of the sphere, and they are the only ones. Again, the proof is based on the Euler characteristic: if v is the number of vertices in the tessellation, s the number of sides and f the number of facets, then:


[image: image13.wmf]2

=

+

-

f

s

v


3. Tessellations of the hyperbolic plane. Our last topic concerns a space the most basic example of non-Euclidean space: the hyperbolic plane. We remind the reader that the non-Euclidean geometry studies metric spaces where the fifth Euclid’s axiom is not true: given a point  and a line, there can be two distinct lines, passing through the point and parallels to the given line.
As a consequence, the sum of the interior angles of a triangle can be different than 
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. The Poincaré model of the hyperbolic plane is the upper half plane of points (x,y) with y>0 and where the "distance" between two points with Euclidean coordinates P=(x,y) and Q=(u,v) is 
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so that the distance of a point from the x-axis is infinite. In this space, the sum of the angles inside a ‘triangle’ is less than 
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 (of course, one should say what a ‘triangle’ is in this context, in fact a ‘line’ 
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is not necessarily what you would expect). Another frequently used model of the hyperbolic plane is Klein’s model, in this case the model space is a disk, more suitable for graphic representations. It turns out that there exist infinitely many regular tessellations of the hyperbolic plane.  More precisely:
Theorem. Let n,m be two positive integers such that 1/n+1/m<1/2. Then there is a regular tessellation of the hyperbolic plane such that every vertex is the intersection of m regular polygons with n sides.

Just a word about the proof and the techniques: by analogy with the case of the Euclidean plane, it is natural to study the discrete subgroups of the ‘isometry’ group of the hyperbolic plane. This group is much richer than the isometry group of the Euclidean plane. The isometry group to consider is PSL(2,R), the group of orientation-preserving isometries. The analog of  a crystallographic group for the hyperbolic plane is called a Fuchsian group (after the German mathematician I.L. Fuchs).
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Figure 1   is an example of regular tessellation of the plane. It is one of the so-called ‘wall-paper’ tessellations. Such tessellations being characterized by their internal symmetries, their classification then amounts to classify certain subgroups of the isometry group of the plane, as we will explain below. The natural question is then to classify








1. p211      4. c1m1        7. p2gg       10. p4gm       13. p3           16. p4        


2. p1m1    5. p2mm      8. c2mm      11. p6mm      14. p3m1       17. p6


3. p1g1     6. p2mg      9. p4mm      12. p1           15. p31m





Fig.2. This is an example of tiling invariant for a group of type p1:  there are neither rotational symmetries, nor reflections. 





Fig.3. Tiling with symmetry group of type p3. There are rotational symmetries of order 3 .





Fig. 5 This beautiful picture, taken from � HYPERLINK "http://www.hadron.org/~hatch/" ��http://www.hadron.org/~hatch/�


HyperbolicTesselations/ , illustrates a regular tiling of the hyperbolic disk with n=3, m=7.





The relevance to our subject is that every regular polyhedron corresponds to a regular tessellation of the sphere: if we inscribe the polyhedron into a sphere, then the radial map associates a point on the sphere to each point of the polyhedron. More explicitly, if P is a point on the polyhedron and O is the center of the sphere, to P we associate the point Q, intersection of the sphere with the





both glide and mirror reflections symmetries. Note that in these illustrations the coloring has only aesthetical purposes. Figure 1 shows an example of a p4m-invariant tiling. A complete table of illustrations for the crystallographic groups can be found, for example, in  [3]. The key to the proof of the theorem is the Euler characteristic of an orbifold. The Euler characteristic is an important invariant of Riemann surfaces and other topological spaces, see [2], chapter 8. 





A Fuchsian group is a topologically discrete group acting discontinuously on the hyperbolic plane (the action has no accumulation points). The most famous example is the modular group: i.e. the group of transformation of the type:         � EMBED Equation.3  ���, with � EMBED Equation.3  ���integers and


� EMBED Equation.3  ���. This group plays a major role in many areas of mathematics, especially in the fields of elliptic curves and modular forms. 











� There is a theory of a-periodic tessellations, we prefer to exclude this topic from this short note
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