8.

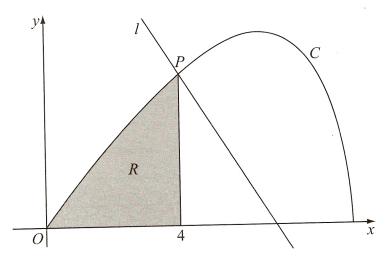


Figure 3

Figure 3 shows the curve C with parametric equations

$$x = 8\cos t$$
, $y = 4\sin 2t$, $0 \le t \le \frac{\pi}{2}$.

The point P lies on C and has coordinates $(4, 2\sqrt{3})$.

(a) Find the value of t at the point P.

(2)

(6)

The line l is a normal to C at P.

(b) Show that an equation for *l* is
$$y = -x\sqrt{3} + 6\sqrt{3}$$
.

The finite region R is enclosed by the curve C, the x-axis and the line x = 4, as shown shaded in Figure 3.

(c) Show that the area of R is given by the integral
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} 64 \sin^2 t \cos t \, dt.$$
 (4)

(d) Use this integral to find the area of R, giving your answer in the form $a + b\sqrt{3}$, where a and b are constants to be determined.

(4)