Appendix:

I will include images as source and reference them in for the final copy ©

Appendix I

Total amount of petrol =
$$\frac{13800}{100} \times 13.3$$

Total amount of petrol = 1,835.4 L

Total amount of
$$gas = 1,835.4 \times 3.169$$

Total amount of gas \neq 5,816.3826 kg

There were 17.7 million registered motor vehicles in Australia as of October 2014. Therefore, the total mass of gases released per year by Australians through vehicle emissions is:

$$= 5,816.3826 \times 17,700000$$

$$= 102949972020 \, kg$$

$$1.03 \times 10^{11} \, kg$$

Appendix II

Moles of octane used when 1L of petrol is burned

$$Moles = \frac{mass}{RMM}$$

$$Mass = D \times V$$

Density of octane =
$$703 \text{ kg/m}^3$$

= 0.703 g/cm^3

$$\therefore Mass = 0.703 \times 1000$$

$$Mass = 703 g$$

Find moles of octane

Relative molecular mass:

$$(8 \times 12) + (18 \times 1)$$

$$= 96 + 18$$

$$= 114 g$$