The figure shows a uniform, 3.0-T magnetic field that is normal to the plane of a conducting, circular loop with a resistance of 1.5 Ω and a radius of 0.024 m. The magnetic field is directed out of the paper as shown. Note: The area of

compared to that of the circular loop. For the following questions, show your work and circle the correct answer.

the non-circular portion of the wire is considered negligible

- (A) What is the magnitude of the average induced emf in the loop if the magnitude of the magnetic field is doubled in 0.4 s? 0.43 V
 - b. 0.65 V
 - c. 0.014 V d. 0.027 V
 - e. 0.038 V

(B) What is the average current around the loop if the magnitude of the magnetic field is doubled in 0.4 s? a. 2.8×10^{-3} A, clockwise

- b. 4.5×10^{-3} A, clockwise c. 4.5×10^{-3} A, counterclockwise
- d. 9.0×10^{-3} A, clockwise
- e. 9.0×10^{-3} A, counterclockwise
- (C) If the magnetic field is held constant at 3.0 T and the loop is pulled out of the region that contains the field in 0.2 s, what is the magnitude of the average induced emf in the loop? a. $8.6 \times 10^{-3} \text{ V}$
 - b. $9.8 \times 10^{-2} \text{ V}$ c. $2.7 \times 10^{-2} \text{ V}$
 - d. $5.4 \times 10^{-2} \text{ V}$
 - e. $6.4 \times 10^{-2} \text{ V}$
- (D) If the magnetic field is held constant at 3.0 T and the loop is pulled out of the region that contains the field in 0.2 s, at what rate is energy dissipated in R? $1.8 \times 10^{-2} \text{ W}$
 - b. 3.6×10^{-2} W c. $3.8 \times 10^{-3} \text{ W}$
 - d. $2.7 \times 10^{-4} \text{ W}$ e. 4.9×10^{-4} W