4. Give a property that an operator \hat{A} must have if it represents the physical quantity \hat{A} of a system described by quantum mechanics. Two such operators \hat{A} and \hat{B} represent the quantities \hat{A} and \hat{B} of a system. \hat{A} and \hat{B} commute. The states $|a,b\rangle$, where a=1,2,3 and b=6,7 are a complete set of simultaneous eigenstates of \hat{A} and \hat{B} , and $a\hbar$ and $b\hbar^2$ are the corresponding eigenvalues. Write down the most general state vector which describes the quantities \hat{A} and \hat{B} for the system.

The system is in the state

$$|\psi\rangle = \frac{1}{\sqrt{6}}|1,6\rangle + \frac{2}{\sqrt{6}}|2,7\rangle + \frac{1}{\sqrt{6}}|3,7\rangle.$$

What values could result from successive measurements of A then B and what would their probabilities be? Explain whether or not the results would be different if the order of measurement were reversed.