2. (4 points) A transcendental irrational number $$S = \sin 0.2 rad$$ can be represented by the infinite series $$S = \sum_{n=0}^{\infty} \frac{(-1)^n}{5^{(2n+1)}(2n+1)!}$$ Let its partial sum be $$S_N = \sum_{n=0}^{N} \frac{(-1)^n}{5^{(2n+1)}(2n+1)!}$$ - a. Use the Ratio test to show the series converges absolutely. - **b**. Write down explicitly and compute the second (S_2) partial sums. Hint: in this case, S_2 has three terns (using n = 0, 1, 2). $$S_2 =$$ **c**. Compute the theoretical error bound of the approximation $S \approx S_2$. $$E_b$$: **d**. Use your computer or calculator to compute the proxy for exact value of $\sin 0.2$. Observe the theoretical error bound holds for S_2 . What does this fact mean?