
- 1. In the figure, two charges $q_1 = +3.0 \mu C$ and $q_2 = -2.0 \mu C$ are separated by 6.0 cm.
 - a. Find the electric forces exerted on each other (magnitude and direction)
 - b. Find the electric field from point P, which is 4.0 cm to the right of q_2 (magnitude and direction).
 - c. Find the positions along the line connecting two charges where the electric field is zero.
 - d. Find the electric field a point P', which is 4.0 cm directly above the midpoint between the two charges. Express the answer by unit vectors.

Assuming k = $9.0 \times 10^9 \text{ Nm}^2/\text{C}^2$ and $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{Nm}^2$

- 2. In the figure of problem #1, a third charge $q_3 = 1.0 \mu C$ is brought to position of P'.
 - a. Find the electric potential energy U of the three-charge configuration.
 - b. With q_3 located at P', find the electric potential V at the location of the midpoint between q_1 and q_2 , where there is no electric charge.