1. In the figure, two charges $\mathrm{q}_{1}=+3.0 \mu \mathrm{C}$ and $\mathrm{q}_{2}=-2.0 \mu \mathrm{C}$ are separated by 6.0 cm .
a. Find the electric forces exerted on each other (magnitude and direction)
b. Find the electric field from point P, which is 4.0 cm to the right of q_{2} (magnitude and direction).
c. Find the positions along the line connecting two charges where the electric field is zero.
d. Find the electric field a point P^{\prime}, which is 4.0 cm directly above the midpoint between the two charges. Express the answer by unit vectors.

Assuming $\mathrm{k}=9.0 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$ and $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}$

2. In the figure of problem \#1, a third charge $q_{3}=1.0 \mu \mathrm{C}$ is brought to position of P^{\prime}.
a. Find the electric potential energy U of the three-charge configuration.
b. With q_{3} located at P^{\prime}, find the electric potential V at the location of the midpoint between q_{1} and q_{2}, where there is no electric charge.

