A family has three children.

Using b to stand for boy and g for girl give the following. (To indicate that the first child is a boy, the second child is a boy, and the third child is a girl enter bbg. Enter your answers as a commaseparated list.)

(a) the sample space

$$S = \left\{ \begin{array}{c} \\ \end{array} \right\}$$

(b) the event E that the family has exactly two daughters

$$E = \left\{ \right.$$

(c) the event F that the family has at least two daughters

$$F = \left\{ \right.$$

(d) the event G that the family has three daughters

$$G = \left\{ \right.$$

Give the following. (Assume that boys and girls are equally likely. Enter your probabilities as fractions.)

(e) *p(E)*

(f)		p(F)	
-			

- (g) p(G)
- (h) o(E)
- (i) o(F)
- (j) o(G)

Need Help? Read It Chat About It

11

Three coins are tossed.

Using H to indicate heads and T to indicate tails, give the following. (To indicate that the first coin is tails, the second coin is tails, and the third coin is heads enter TTH. Enter your answers as a comma-separated list.)

(a) the sample space

$$S = \left\{ \right.$$

(b) the event \boldsymbol{E} that exactly two are heads

$$E = \left\{ \right.$$

(c) the event F that at least two are heads

$$F = \left\{ \right.$$

(d) the event G that all three are heads

 $G = \left\{ ---- \right\}$

Give the following. (Enter the probabilities as fractions.)

- (e) *p(E)*
- (f) *p(F)*
- (g) p(G)
- (h) o(E)
- (i) o(F)
- (j) o(G)

Need Help? Read It Chat About It

	Two coins are tossed.
	(a) Find the probability that both are heads.
	(b) Find the probability that one is heads and one is tails.
	(c) Find the probability that both are tails.
	(d) Which is more likely: that the two coins match or that they don't match?Two coins that match are more likely.
	O Two coins that don't match are more likely.
	O There isn't enough information to draw a conclusion.
	O They are equally likely.
	Need Help? Read It Chat About It
21	
	Mendel found that snapdragons have no color dominance; a snapdragon with one red gene and one white gene will have pink flowers. If a pure-red snapdragon is crossed with a pure-white one, find the probability of the following.
	(a) a red offspring
	(b) a white offspring
	(c) a pink offspring
	Need Help? Read It Chat About It