Consider the 2nd order differential equation given below for y(t):
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and solve it as follows. Define  
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a) From (3) deduce a 2nd order differential equation and initial conditions (at t = 0) satisfied by 
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. Solve for 
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b) From (3) deduce another 2nd order differential equation satisfied by 
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. Solve it obtaining 
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in terms of two undetermined constants.

c) Determine these constants by assuming the initial conditions (at t =
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are given by
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