The lemma is from page 327 in the link. I am not sure about the dimensions. I believe that \mathbf{X} is a vector.

Theorem 5.3.7 implies the following lemma, which is analogous to Lemma 2.3.2. We leave the proof to you (Exercise 5.3.13).

Lemma 5.3.8 If f is differentiable at \mathbf{X}_{0}, then

$$
f(\mathbf{X})-f\left(\mathbf{X}_{0}\right)=\left(d_{\mathbf{x}_{0}} f\right)\left(\mathbf{X}-\mathbf{X}_{0}\right)+E(\mathbf{X})\left|\mathbf{X}-\mathbf{X}_{0}\right|,
$$

where E is defined in a neighborhood of \mathbf{X}_{0} and

$$
\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}} E(\mathbf{X})=E\left(\mathbf{X}_{0}\right)=0 .
$$

I need a proof for this lemma 5.3.8. And in addition to the proof I need you to define
1: What is $E(x)$
2: what does the notation $\left(d_{x_{0}} f\right)\left(\boldsymbol{X}-\boldsymbol{X}_{\mathbf{0}}\right)$ mean. I have never seen the notation $\left(d_{x_{0}} f\right)$?
3: Please define the dimensions of f and \mathbf{X} in the proof.

