The Case of Normal Random Variables

When the X_{i} 's form a random sample from a normal distribution, \bar{X} and T_{o} are both
normally distributed. Here is a more general result concerning linear combinations. The proof will be given toward the end of the section.

PROPOSITION

If $X_{1}, X_{2}, \ldots, X_{n}$ are independent, normally distributed rv's (with possibly different means and/or variances), then any linear combination of the X_{i} 's also has a normal distribution. In particular, the difference $X_{1}-X_{2}$ between two independent, normally distributed variables is itself normally distributed.

Example 6.15 (Example 6.12 continued)

The total revenue from the sale of the three grades of gasoline on a particular day was $Y=3.5 X_{1}+3.65 X_{2}+3.8 X_{3}$, and we calculated $\mu_{Y}=6465$ and (assuming independence) $\sigma_{Y}=493.83$. If the X_{i} 's are normally distributed, the probability that revenue exceeds 5000 is
$\begin{aligned} P(Y>5000) & =P\left(Z>\frac{5000-6465}{403.83}\right)=P(Z>-2.967) \\ & =1-\Phi(-2.967)=.9985\end{aligned}$
The CLT can also be generalized so it applies to certain linear combinations. Roughly
speaking, if n is large and no individual term is likely to contribute too much to the overall value, then Y has approximately a normal distribution.

Proofs for the Case $n=2$

For the result concerning expected values, suppose that X_{1} and X_{2} are continuous with joint $\operatorname{pdf} f\left(x_{1}, x_{2}\right)$. Then

$$
\begin{gathered}
E\left(a_{1} X_{1}+a_{2} X_{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(a_{1} x_{1}+a_{2} x_{2}\right) f\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
=a_{1} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1} f\left(x_{1}, x_{2}\right) d x_{2} d x_{1}+a_{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{2} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
=a_{1} \int_{-\infty}^{\infty} x_{1} f X_{X_{1}}\left(x_{1}\right) d x_{1}+a_{2} \int_{-\infty}^{\infty} x_{2} f_{X_{2}}\left(x_{2}\right) d x_{2} \\
=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)
\end{gathered}
$$

Summation replaces integration in the discrete case. The argument for the variance result does not require specifying whether either variable is discrete or continuous. Recalling that $V(Y)=E\left[\left(Y-\mu_{Y}\right)^{2}\right]$,

$$
\begin{gathered}
\left.=E\left\{\left[a_{1} X_{1}+a_{2} X_{2}\right) \quad a_{2} X_{2}-\left(a_{1} \mu_{1}+a_{2} \mu_{2}\right)\right]^{2}\right\} \\
=E\left\{a_{1}^{2}\left(X_{1}-\mu_{1}\right)^{2}+a_{2}^{2}\left(X_{2}-\mu_{2}\right)^{2}+2 a_{1} a_{2}\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right\}
\end{gathered}
$$

The expression inside the braces is a linear combination of the variables $Y_{1}=\left(X_{1}-\right.$ $\left.\mu_{1}\right)^{2}, Y_{2}=\left(X_{2}-\mu_{2}\right)^{2}$, and $Y_{3}=\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)$, so carrying the E operation through to the three terms gives $a_{1}^{2} V\left(X_{1}\right)+a_{2}^{2} V\left(X_{2}\right)+2 a_{1} a_{2} \operatorname{Cov}\left(X_{1}, X_{2}\right)$ as required.

The previous proposition has a generalization to the case of two linear combinations:

PROPOSITION

Let U and V be linear combinations of the independent normal rv's $X_{1}, X_{2}, \ldots, X_{n}$. Then the joint distribution of U and V is bivariate normal. The converse is also true: if U and V have a bivariate normal distribution then they can be expressed as linear combinations of independent normal rv's.

The proof uses the methods of Section 5.4 together with a little matrix theory.

Don't have a proof.

Can you prove this last proposition?

