- 1. Determine whether the sequence whose nth term is $\ell n n! \left(n + \frac{1}{2}\right) \ell n n + n$ converges or diverges.
- 2. (a) Given $f: R \to R$, prove that differentiability implies continuity but not vice versa.
 - (b) Consider an interval $I \subset R$ and suppose that $f: I \to R$ is continuous. Prove that if (i) x^* is a local maximum of f and (ii) x^* is the only extreme point of f on I, then x^* is a global maximum of f on I.

3. Determine whether

- (a) reciprocals of positive concave functions are convex,
- (b) reciprocals of positive convex functions are concave,
- (c) there exists a convex function $f: R_{++} \to R$ such that $f(x) \leq \ln x$ for all $x \in R_{++}$.
- 4. Suppose that f(x) has a continuous first derivative for all $x \in R$.
 - (a) Prove that f(x) is concave if and only if $f(x^*) + (x x^*)f'(x^*) \ge f(x)$ for all x and $x^* \in R$.
 - (b) Given that f(x) is concave, prove that x^* is a global maximum of f(x) if and only if $f'(x^*) = 0$.
 - (c) Given that f(x) is concave, prove that its set of global maxima is either empty, a singleton, or an infinite convex set.