Just an example from the textbook…I hope this helps.

v1 is (2,1,0) and v2 is (-1, 0, 1)
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We return to Example 4 of Section 1. The basis {v1, vo} we used there
was certainly not an orthogonal basis, but it is not hard to come up with
one that is. Instead, we take
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(It is immediate that w; - wo = 0 and that w;, w, lie in the plane
— 2x, + x3 = 0.) Now, we calculate
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as we found earlier.




(Next Page……..)

I think A is just a matrix in the formula (*).
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{vi, ..., v4} is an orthogonal set. In particular,
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Now it is time to develop an algorithm for transforming a given (ordered)
basis {vy, . .., v} for a subspace (or inner product space) into an orthogonal basis




