#/2 EC prof 11.14 *

Chy 5

Va - 24 421

A 2,400 V, balanced, three-phase delta circuit (see Figure 5-44, page 232 in the textbook) has phase load impedances of 40+j60 OHMS. Find the line currents I_{aA} , I_{bB} , and I_{cC} .

NOTE: Just as the current I_{aA} shown in Figure 5.44 is the current flowing from node a to node A, the current I_{bB} is the current flowing from node b to node B, and the current I_{cC} is the current flowing from node c to node C.

a.
$$I_{aA}$$
=57.64 e^{j86.3°}, I_{bB} =57.64 e^{-j153.7°}, I_{cC} =57.64 e^{-j33.7}

b.
$$I_{aA} = 33.28 \text{ e}^{-j56.3^{\circ}}, I_{bB} = 33.28 \text{ e}^{-j176.3^{\circ}}, I_{cC} = 33.28 \text{ e}^{j63.7}$$

c.
$$I_{aA} = 57.64 \text{ e}^{-j86.3}$$
°, $I_{bB} = 57.64 \text{ e}^{j153.7}$ °, $I_{cC} = 57.64 \text{ e}^{j33.7}$

d.
$$I_{aA} = 33.28 \text{ e}^{j56.3^{\circ}}, I_{bB} = 33.28 \text{ e}^{j176.3^{\circ}}, I_{cC} = 33.28 \text{ e}^{-j63.7}$$

 $V_{L} = \frac{1}{2}ABV$ $V_{L} =$