Show that for observations made at very large distance (
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 the electric and magnetic fields of Example 6-3 reduce to 
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Example 6-3. A very thin linear electric current element of very short length (
[image: image3.wmf]l
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) and with a constant current
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Such that 
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= constant, is positioned symmetrically at the origin and oriented along the z axis, as shown in Figure 6-2a. Such an element is usually referred to as an infinitesimal dipole [1]. Determine the electric and magnetic fields radiated by the dipole.
Solution. The solution will be obtained using the procedure summarized in Section 6.4. Since the element (source) carries only an electric current 
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, the magnetic current 
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 and the vector potential F of (6-97b) are both zero. The vector potential A of (6-97a) is then written as
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Where R is the distance from any point on the element, -
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, to the observation point. Since in the limit as 
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So that 
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Transforming the vector potential A from rectangular to spherical components using the inverse (in this case also transpose) transformation of (II-9) from Appendix II, we can write
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Using the symmetry of the problem, that is, no variation in 
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, (6-32a) can be expanded in spherical coordinates and written in simplified form as
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which reduces to 
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The electric field E can be found using either (6-32b) or (6-32c), that is,

E=
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And either leads to 
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The E- and H-field components are valid everywhere except on the source itself.
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