The two problems are taken from this derivation of the inclusion-exclusion principle:
http://www.proofwiki.org/wiki/Inclusion-Exclusion_Principle\#Induction_Hypothesis

Theorem

```
Let }\mathcal{S}\mathrm{ be an algebra of sets
Let }\mp@subsup{A}{1}{},\mp@subsup{A}{2}{},\ldots,\mp@subsup{A}{n}{}\mathrm{ be finite sets.
Let f:S }->\mathbb{R}\mathrm{ be an additive function.
Then:
\[
\begin{aligned}
f\left(\bigcup_{i=1}^{n} A_{i}\right)= & \sum_{i=1}^{n} f\left(A_{i}\right) \\
& -\sum_{1 \leq i<j \leq n} f\left(A_{i} \cap A_{j}\right) \\
& +\sum_{1 \leq i<j<k \leq n} f\left(A_{i} \cap A_{j} \cap A_{k}\right) \\
& \cdots \\
& +(-1)^{n-1} f\left(\bigcap_{i=1}^{n} A_{i}\right)
\end{aligned}
\]
```


Corollary

Let \mathcal{S} be an algebra of sets.
Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets which are pairwise disjoint
Let $f: \mathcal{S} \rightarrow \mathbb{R}$ be an additive function.

Then:

$$
f\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} f\left(A_{i}\right)
$$

Proof

Proof by induction
For all $n \in \mathbb{N}^{*}$, let $P(n)$ be the proposition

$$
\begin{aligned}
f\left(\bigcup_{i=1}^{n} A_{i}\right)= & \sum_{i=1}^{n} f\left(A_{i}\right) \\
& -\sum_{1 \leq i<j \leq n} f\left(A_{i} \cap A_{j}\right) \\
& +\sum_{1 \leq i<j<k \leq n} f\left(A_{i} \cap A_{j} \cap A_{k}\right) \\
& \cdots \\
& +(-1)^{n-1} f\left(\bigcap_{i=1}^{n} A_{i}\right)
\end{aligned}
$$

$P(1)$ is true, as this just says $f\left(A_{1}\right)=f\left(A_{1}\right)$.

Basis for the Induction

$P(2)$ is the case

$$
f\left(A_{1} \cup A_{2}\right)=f\left(A_{1}\right)+f\left(A_{2}\right)-f\left(A_{1} \cap A_{2}\right)
$$

which is the result Additive Function on Union of Sets.
This is our basis for the induction.

Induction Hypothesis
Now we need to show that, if $P(r)$ is true, where $r \geq 2$, then it logically follows that $P(r+1)$ is true.

So this is our induction hypothesis:

$$
\begin{aligned}
f\left(\bigcup_{i=1}^{r} A_{i}\right)= & \sum_{i=1}^{r} f\left(A_{i}\right) \\
& -\sum_{1 \leq i<j \leq r} f\left(A_{i} \cap A_{j}\right) \\
& +\sum_{1 \leq i<j<k \leq r} f\left(A_{i} \cap A_{j} \cap A_{k}\right) \\
& \cdots \\
& +(-1)^{r-1} f\left(\bigcap_{i=1}^{r} A_{i}\right)
\end{aligned}
$$

Then we need to show:

$$
\begin{aligned}
f\left(\bigcup_{i=1}^{r+1} A_{i}\right)= & \sum_{i=1}^{r+1} f\left(A_{i}\right) \\
& -\sum_{1 \leq i<j \leq r+1} f\left(A_{i} \cap A_{j}\right) \\
& +\sum_{1 \leq i<j<k \leq r+1} f\left(A_{i} \cap A_{j} \cap A_{k}\right) \\
& \ldots \\
& +(-1)^{r} f\left(\bigcap_{i=1}^{r+1} A_{i}\right)
\end{aligned}
$$

Induction Step
This is our induction step:

$$
\begin{aligned}
f\left(\bigcup_{i=1}^{r+1} A_{i}\right) & =f\left(\bigcup_{i=1}^{r} A_{i} \cup A_{r+1}\right) \\
& =f\left(\bigcup_{i=1}^{r} A_{i}\right)+f\left(A_{r+1}\right)-f\left(\bigcup_{i=1}^{r} A_{i} \cap A_{r+1}\right) \quad \text { from the base case }
\end{aligned}
$$

Consider $f\left(\bigcup_{i=1}^{r} A_{i} \cap A_{r+1}\right)$
By the fact that Intersection Distributes over Union, this can be written:

$$
f\left(\bigcup_{i=1}^{r}\left(A_{i} \cap A_{r+1}\right)\right)
$$

To this, we can apply the induction hypothesis:

$$
\begin{aligned}
f\left(\bigcup_{i=1}^{r}\left(A_{i} \cap A_{r+1}\right)\right)= & \sum_{i=1}^{r} f\left(A_{i} \cap A_{r+1}\right) \\
& -\sum_{1 \leq i<j \leq r} f\left(A_{i} \cap A_{j} \cap A_{r+1}\right) \\
& +\sum_{1 \leq i<j<k \leq r} f\left(A_{i} \cap A_{j} \cap A_{k} \cap A_{r+1}\right) \\
& \cdots \\
& +(-1)^{r-1} f\left(\bigcap_{i=1}^{r} A_{i} \cap A_{r+1}\right)
\end{aligned}
$$

Why can they apply the induction hypothesis to the part here as well? Have they not changed the conditions by using $A_{i} \cap A_{r+1}$?

At the same time, we have the expansion of the term $f\left(\bigcup_{i=1}^{r} A_{i}\right)$ to take into account.

So we can consider the general term of s intersections in the expansion of $f\left(\bigcup_{i=1}^{r+1} A_{i}\right)$:

$$
(-1)^{s-1} \sum_{\substack{i \in I \\|x|-s}} f\left(\bigcap_{i \in I} A_{i}\right)-(-1)^{\varepsilon-2} \sum_{\substack{i \in J \\|r|-s-1}} f\left(\bigcap_{i \in J} A_{i} \cap A_{r+1}\right)
$$

where:

- I ranges over all sets of s elements out of $[1 ., r]$
- J ranges over all sets of $s-1$ elements out of $[1 \ldots r]$
- $1 \leq s \leq r$

Where do we get to take into account the expansion of
where:

- I ranges over all sets of s elements out of $[1 ., r]$
- J ranges over all sets of $s-1$ elements out of $[1 \ldots r]$
- $1 \leq s \leq r$

