The two problems are taken from this derivation of the inclusion-exclusion principle:

http://www.proofwiki.org/wiki/Inclusion-Exclusion_Principle#Induction_Hypothesis

Theorem

Let ${\mathcal S}$ be an algebra of sets.

Let A_1,A_2,\ldots,A_n be finite sets.

Let $f:\mathcal{S} o\mathbb{R}$ be an additive function

Then:

$$f\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} f(A_{i})$$

$$- \sum_{1 \leq i < j \leq n} f(A_{i} \cap A_{j})$$

$$+ \sum_{1 \leq i < j < k \leq n} f(A_{i} \cap A_{j} \cap A_{k})$$

$$\cdots$$

$$+ (-1)^{n-1} f\left(\bigcap_{i=1}^{n} A_{i}\right)$$

Corollary

Let ${\mathcal S}$ be an algebra of sets.

Let A_1,A_2,\ldots,A_n be finite sets which are pairwise disjoint.

Let $f:\mathcal{S} o\mathbb{R}$ be an additive function.

Then

$$f\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} f(A_i)$$

Proof

Proof by induction:

For all $n \in \mathbb{N}^*$, let P(n) be the proposition:

$$f\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} f(A_{i})$$

$$- \sum_{1 \leq i < j \leq n} f(A_{i} \cap A_{j})$$

$$+ \sum_{1 \leq i < j < k \leq n} f(A_{i} \cap A_{j} \cap A_{k})$$

$$\cdots$$

$$+ (-1)^{n-1} f\left(\bigcap_{i=1}^{n} A_{i}\right)$$

P(1) is true, as this just says $f(A_1)=f(A_1)$

Basis for the Induction

P(2) is the case:

$$f(A_1 \cup A_2) = f(A_1) + f(A_2) - f(A_1 \cap A_2)$$

which is the result Additive Function on Union of Sets.

This is our basis for the induction.

Induction Hypothesis

Now we need to show that, if P(r) is true, where $r \geq 2$, then it logically follows that P(r+1) is true.

So this is our induction hypothesis:

$$f\left(\bigcup_{i=1}^{r} A_{i}\right) = \sum_{i=1}^{r} f(A_{i})$$

$$- \sum_{1 \leq i < j \leq r} f(A_{i} \cap A_{j})$$

$$+ \sum_{1 \leq i < j < k \leq r} f(A_{i} \cap A_{j} \cap A_{k})$$

$$\cdots$$

$$+ (-1)^{r-1} f\left(\bigcap_{i=1}^{r} A_{i}\right)$$

Then we need to show:

$$f\left(\bigcup_{i=1}^{r+1} A_i\right) = \sum_{i=1}^{r+1} f(A_i)$$

$$- \sum_{1 \le i < j \le r+1} f(A_i \cap A_j)$$

$$+ \sum_{1 \le i < j < k \le r+1} f(A_i \cap A_j \cap A_k)$$

$$\cdots$$

$$+ (-1)^r f\left(\bigcap_{i=1}^{r+1} A_i\right)$$

Induction Step

This is our induction step:

$$\begin{split} f\biggl(\bigcup_{i=1}^{r+1}A_i\biggr) &= \ f\biggl(\bigcup_{i=1}^rA_i\cup A_{r+1}\biggr) \\ &= \ f\biggl(\bigcup_{i=1}^rA_i\biggr) + f(A_{r+1}) - f\biggl(\bigcup_{i=1}^rA_i\cap A_{r+1}\biggr) \end{split} \qquad \text{from the base case}$$

Consider
$$f\left(\bigcup_{i=1}^r A_i\cap A_{r+1}\right)$$
 .

By the fact that Intersection Distributes over Union, this can be written:

$$f\left(\bigcup_{i=1}^r (A_i\cap A_{r+1})\right)$$

To this, we can apply the induction hypothesis:

$$f\left(\bigcup_{i=1}^{r} (A_{i} \cap A_{r+1})\right) = \sum_{i=1}^{r} f(A_{i} \cap A_{r+1})$$

$$- \sum_{1 \leq i < j \leq r} f(A_{i} \cap A_{j} \cap A_{r+1})$$

$$+ \sum_{1 \leq i < j < k \leq r} f(A_{i} \cap A_{j} \cap A_{k} \cap A_{r+1})$$
...
$$+ (-1)^{r-1} f\left(\bigcap_{i=1}^{r} A_{i} \cap A_{r+1}\right)$$

Why can they apply the induction hypothesis to the part here as well? Have they not changed the conditions by using $A_i \cap A_{r+1}$?

At the same time, we have the expansion of the term $figg(igcup_{i=1}^r A_iigg)$ to take into account.

So we can consider the general term of s intersections in the expansion of $figg(\bigcup_{i=1}^{r+1}A_iigg)$:

$$(-1)^{\mathfrak{p}-1}\sum_{{i\in I}\atop{|I|_{\mathsf{loc}}}}f\Biggl(\bigcap_{i\in I}A_i\Biggr)-(-1)^{\mathfrak{p}-2}\sum_{{i\in I}\atop{|I|_{\mathsf{loc}}=1}}f\Biggl(\bigcap_{i\in J}A_i\cap A_{r+1}\Biggr)$$

where:

- ullet I ranges over all sets of s elements out of $[1 \ldots r]$
- ullet J ranges over all sets of s-1 elements out of $[1 \mathrel{.\:.} r]$
- 1 < s < r

Where do we get to take into account the expansion of

$$f\left(\bigcup_{i=1}^r A_i\right)$$

? What does it mean? And how do they end up with the part

$$(-1)^{\mathfrak{p}-1}\sum_{\stackrel{i\in I}{|\mathfrak{p}|_{\mathrm{res}}}}f\Biggl(\bigcap_{i\in I}A_{i}\Biggr)-(-1)^{\mathfrak{p}-2}\sum_{\stackrel{i\in J}{|\mathfrak{p}|_{\mathrm{res}-1}}}f\Biggl(\bigcap_{i\in J}A_{i}\cap A_{r+1}\Biggr)$$

where:

- ullet I ranges over all sets of s elements out of $[1 \mathrel{.} \mathrel{.} r]$
- ullet J ranges over all sets of s-1 elements out of $[1 \mathrel{.\:.} r]$
- $1 \le s \le r$