The two problems are taken from this derivation of the inclusion-exclusion principle:
http://www.proofwiki.org/wiki/Inclusion-Exclusion_Principle#finduction_Hypothesis

Theorem

Let & be an algebra of sets.
Let Ay, Aa,..., Ay, be finite sets

Let f: & — R be an additive function.

Then:
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Corollary

Let S be an algebra of sets.
Let 41, 4,,..., Ay be finite sets which are pairwise disjoint.

Let f: & — R be an additive function

Then:
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Proof

Proof by induction:
Forallm € N*, let P(n) be the proposition:
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P(1) is true. as this just says f(A1) = f(41)

Basis for the Induction
P(2) is the case:

f(A1 U Az) = f(A1) + f(A2) — f(A1 N Aq)
which is the result Additive Function on Union of Sets.

This is our basis for the induction.



Induction Hypothesis

Mow we need to show that. if P(r) is true, where r = 2. then it logically follows that P(r + 1) is true.

So this is our induction hypothesis:
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Then we need to show:
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Induction Step

This is our induction step:
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from the base case



Consider f(U AN A,H) .
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By the fact that Intersection Distributes over Union, this can be written:
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To this, we can apply the induction hypothesis:
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Why can they apply the induction hypothesis to the part here as well? Have they not changed the
conditions by using A; N A, .1?
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At the same time, we have the expansion of the term f ( U A,) to take into account.
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So we can consider the general term of s intersections in the expansion of f ( U A,) :
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where:

o I ranges over all sets of s elements out of [1. . 7]

» J ranges over all sets of s — 1 elements out of [1 .. *r']
o1 <s<r
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where:

o I ranges over all sets of s elements outof [1. . 7]

« .J ranges over all sets of s — 1 elements outof [1 . . 7]
ol <s<r




