The two problems are taken from this derivation of the inclusion-exclusion principle:
http://www.proofwiki.org/wiki/Inclusion-Exclusion_Principle#Induction_Hypothesis
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Why can they apply the induction hypothesis to the part here as well? Have they not changed the conditions by using ?
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Where do we get to take into account  the expansion of 
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? What does it mean? And how do they end up with the part
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Then we need to show:
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Induction Step

This is our induction step:

f(@ A.) f(U p UAN,)
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= f(U Av) +f(Am)*f<U A mAM) from the base case
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By the fact that Intersection Distributes over Union, this can be written

f(U(A.mAm)

To this, we can apply the induction hypothesis

f(U(A. mAM)) = if(A. N Ari1)
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At the same time, we have the expansion of the term f( U A,) to take into account.
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So we can consider the general term of s intersections in the expansion of f( U A.)
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where:

« I ranges over all sets of s elements out of [1. . 7]

o J ranges over all sets of s — 1 elements out of [1. . 7]
1 <s<r




image11.png




image12.png
‘ GO %‘;I(DA.) - (- E /(‘Qm n A,.,)




image1.png
Theorem

Let S be an algebra of sets
Let A1, As,..., Ay be finite sets
Let £ : § — R be an additive function

Then

= £(4:)
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Corollary
Let S be an algebra of sets

Let Ay, Ay,..., Ay be finite sets which are pairwise disjoint.
Let £ : § — R be an additive function

Then
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Proof

Proof by induction
Foralln & N*. let P(n) be the proposition
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P(1) is true, as this just says (A1) = £(41)
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Basis for the Induction
P(2) is the case

F(A1 U A) = F(A1) + F(42) - f(A1 1 43)
which is the result Additive Function on Union of Sets.

This is our basis for the induction
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Induction Hypothesis

Now we need to show that, if P(r) is true, where > 2, then it logically follows that P(r + 1) is true

So this is our induction hypothesis
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