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(b) By considering the limit of the integral of the functio:
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when ¢ > 0. (Use Theorem 11.4.) — Sre w [0

(c) In a similar way, show that
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. when ¢ > 0, and hence complete the proof.
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. 10.14. Theorems on Limiting Contours. In many applications of contour
iintegration it is necessary to evaluate the limit of the result of integrating a
'function of a complex variable along an arc of a circle as the radius of that
lcircle either increases without limit or tends to zero. In this section we collect
‘and establish certain general results of frequent application. First, however, it
|is convenient to introduce a useful definition.
| If, along a circular arc C, of radius r, we have | f(z)| = K,, where K, is a
' bound depending only on r and hence independent of angular position on C,,
, and if K, — 0 as r — oo (or r — 0), then we will say that f(z) tends to zero
::c@wﬁ? on C, as r — oo (or r — 0). Thus, for example, if C, is a circular
_,ﬁ arc with center at the origin and f(z) = z/(z? + 1), we have
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on C,, if use is made of the basic inequality (10). Hence, if we then take

| K, = rf(r* — 1), we conclude that here f(z) tends to zero uniformly on C, as

- r— oo. Also, we may take K, = r/(1.— r?) when r < 1 to show that the same
is true when r — 0.

In particular, any rational function (ratio of polynomials) whose denomi-
nator is of higher degree than the numerator tends uniformly to zero on any
C, as r — co. This follows from the fact that then |z|| f(z)| tends to a limit
(which may be zero) as |z| = r — oo, and hence is bounded by some constant
k when r is large (say, r = r,), so that we may take K, = k/r (when r = r,).

The following theorems now may be stated:

r=1

Theoremn 1. If, on a circular arc C, with radius R and center at the origin,
zf(2) — O uniformly as R — oo, then
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Theorem II. Suppose that, on a circular arc Cy with radius R and center at

the origin, f(z) — O uniformly as R — co, Then:

1. lim| e™f(z)dz =0 (m>0)

R-a v Cp

if Cp is in the first and/or second quadrants.t

, 2. w_.m N e f(z)dz =0 (m>0)
|if C, is in the third and/or fourth quadrants.

3. w._.m .na e f(z)dz =0 (m>0
if Cy is in the second and/or third quadrants.

4. lim| e™f(2)dz=0 (m>0)
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if C, is in the first and/or fourth quadrants.

Theorem III, If, on a circular arc C, with radius p and center at z =g,
| (z — a)f(z) — 0 uniformly as p — 0, then

lim | f(z)dz=0.
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Theorem IV. Suppose that f(z) has a simple pole at z = a, with residue Res (a).
Then, if C, is a circular arc with radius p and center at z = 4, intercepting an
- angle ¢ at z = a, there follows
lim ._. f(2) dz = i Res (a),
o0 JCp
| where ¢ is positive if the integration is carried out in the counterclockwise
direction, and negative otherwise.

The proof of Theorem I follows from the fact that if |zf(z)| = Ky then
If(z)| = Kg|R. Since the length of Cy is |@|R, where a is the subtended angle,
- Equation (80) gives

The proof of Theorem II is somewhat more complicated. To prove part 1,
- we use the relation
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.ﬁnx e f(z) dz

= |, lem I @)1z

#This result is known as Jordan's lemma.

\ﬁ.mqw\

' But on C, we have |dz| = Rd#,| f(2)| = Kz and |etms| = e"mRsn8, acc
| to (150a). Hence there follows
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where 0 < 6, < @, = n. Since the last integrand is positive, the right
member is not decreased if we take 8, = 0 and 6, = =. Hence we have
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This integral cannot be evaluated in terms of elementary functions of R.

ever, in the range 0 = 0 = =/2 the truth of the relation
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is easily realized by comparing the graphs of y = sin x and y = 2x/x.
' we have also, from (160),
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'and hence, if i > 0, I, tends to zero with K, as R — oo, as was to be s
| The other three parts of Theorem II are established by completely
- ogous methods.

" To prove Theorem III we notice that the integrand is not greate
'K, |p in absolute value and the length of the path is |a|p, where e is th
tended angle. Hence the integral tends to zero with K.

To establish Theorem IV, we notice that if f(z) has a simple pole at
we can write
s =380 4y,

zZz—a

where @(z) is analytic, and hence bounded, in the neighborhood of
- Hence we have

.ﬁ, f@)dz = % Res(a) 4 4 b o(z) dz.

z—a
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' On C, we can write z = a + pe”, where @ varies from an initial valu
' @, + o. Hence the first integral on the right becomes

ot . i o+ o
Res (a) ._\A ,.\..\Mhil%@o = Res (a) .ﬂ df = wi Res (a).
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'The second integral on the right tends to zero with p, in consequet
'"Theorem III, establishing the desired result.




