- #1) Let C denote the positively oriented circle |z| = 2 and evaluate the integral
 - (a) $\int_C \tan z \, dz$
 - (b) $\int_{\mathcal{C}} \frac{dz}{\sinh 2z}.$
- #2) (a) Find the bilinear transformation w = S(z) that maps the crescent-shaped region that lies inside the disk D:|z 2| < 2 and outside the circle |z 1| = 1 onto a horizontal strip.
 - (b) Graph.
- #3) (a) The Euler numbers are the numbers $E_n(n=0,1,2,...)$ in the Maclaurin series representation $\frac{1}{\cosh z} = \sum_{n=0}^{\infty} \frac{E_n}{n!} z^n$, where $\left(|z| < \frac{\pi}{2}\right)$. Point out why this representation is valid in the indicated disk and why $E_{2n+1} = 0$, where (n=0,1,2,...).
 - (b) Show that $E_0 = 1$, $E_2 = -1$, $E_4 = 5$, and $E_6 = -61$.
- #4) Evaluate the integral $\int_C \frac{dz}{(z^2-1)^2+3}$, where C is the positively oriented boundary of the rectangle whose sides lie along the lines $x=\pm 2, y=0$, and y=1.
- #5) Show that the mapping $w = S(z) = \frac{(1-i)z+2}{(1+i)z+2}$ maps the disk D:|z+1| < 1, one-to-one and onto the upper half plane Im(w) > 0.