
Standing Waves: Dependence of $(f_1)^2$ on the hanging mass M

If the mass density of the string was 0.0013 kg/m and measurement of the relevant length of the string gave 1.36 m, and the slope k of your graph was 1,000 s⁻²kg⁻¹, then what would your measured value be for the acceleration due to gravity g?

Answer:	[Num]	[Units]
---------	-------	---------

Use the following equations to answer this question:

The tension T in the string is given by the gravitational force $T\!=\!Mg$

The equation for the velocity v of a traveling wave on a string is $v=\sqrt{rac{T}{\mu}}$

The equation for the frequencies $\,f_n\,$ of the standing waves on a string is

$$f_n = n \, rac{v}{2L}$$

equation for the frequency f_1 as a function of the mass M that is hung from the string:

$$(f_1)^2 = \frac{(1)^2}{(2L)^2} \frac{g}{\mu} M$$

$$k = \frac{v}{2L}$$