(a) If $\phi = \frac{\mathbf{r} \cdot \mathbf{k}}{r^3}$ where $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and r is the magnitude of \mathbf{r} , prove that

$$\nabla \phi = \frac{1}{r^5} \left[r^2 \mathbf{k} - 3(\mathbf{r}.\mathbf{k}) \mathbf{r} \right]$$

(b) The vector \mathbf{v} is defined by $\mathbf{v} = (\mathbf{a} \cdot \mathbf{r})\mathbf{r}$ where $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and \mathbf{a} is a constant vector.

Show that $\nabla . \mathbf{v} = 4(\mathbf{a}.\mathbf{r})$ and $\nabla \times \mathbf{v} = \mathbf{a} \times \mathbf{r}$.