import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.text.NumberFormat;

import java.util.*;

/** Created on June 26, 2004, 5:07 PM

 *

 * Problem statement – Create a Mortgage Calculator WITHOUT a graphical user interface.

 *

 * Purpose – provide a user-friendly service to potential users for accurately planning mortgage and other types of loans

 *

 * Scope – The mortgage calculator must display the mortgage payment amount given the amount of the mortgage,

 * the term of the mortgage, and the interest rate of the mortgage. This program must have hard code amount = 200,000,

 * term= 30 years, interest rate = 5.75%, monthly payment = formula using math.pow. Derive amortization table that will

 * generate Payment #, Principle, Monthly Payment, Pay Date (15JUL04), Interim Balance, Interest Paid, and Principle Paid

 * for each payment over the term of the loan and scrolls on the screen, hesitate and then display more of the list.

 *

 * Algorithm – Divide the yearly interest rate of 5.75% by 12 to get monthly interest rate. Multiply the number of years by 12

 * to get the number of months. Formula for monthly payment: Monthly Payment = [P((1+r)^n)*r]/[(1+r^n)-1], where r and n are

 * calculated as above.

 * Formula for interest balance: Interest Balance= Current Principle * e (percentage rate/365 * days between payments.

 *

 *

 * NETBEANS IDE 3.6*/

//Calculates, formulates, vectors the mortgage calculator and returns the parameter string.

//Provide control access to the variables by using setters and getters.

public class Mortgagecalculator{

 //define variable

 public static int years;

 public double loanAmount;

 public double interestRate;

 public double monthlyPayment;

 public double balance;

 private static int numberOfMonths, numberOfDays;

 final static double e = 2.7182818284594;

 Vector firstRow = new Vector();

 NumberFormat form = NumberFormat.getInstance();

 public void setYears(int inYears)//setter

 { years=inYears;

 }//end set years

 public static int getYears()//getter

 {

 return years;

 }//end get years

 public void setLoanAmount(double inLoanAmount)//setter

 {

 loanAmount=inLoanAmount;

 }//end set loanAmount

 public double getLoanAmount()//getter

 {

 return loanAmount;

 }//end get loanAmount

 public void setInterestRate(double inInterestRate)//setter

 {

 interestRate=inInterestRate;

 }//end set interestRate

 public double getInterestRate()//getter

 {

 return interestRate;

 }//end get interestrate

 private int getDaysBetweenPayments(){

 int daysBetweenPayments = 30;

 return daysBetweenPayments;

 }

 //Calculate interim Balance

 private double calculateInterimBalance(double principle){

 double dailyRate = interestRate/365;

 int days = getDaysBetweenPayments();

 double exponent = dailyRate*days;

 double base = Math.pow(e, exponent);

 double interimBalance = principle*(1-base);

 return interimBalance;

 }

 //Calculate interest Paid

 private double calculateInterestPaid(double interimBalance, double previousBalance){

 double interestPaid = interimBalance - previousBalance;

 return interestPaid;

 }

 //Calculate principle Paid

 private double calculatePrinciplePaid(double interestPaid){

 double principlePaid = monthlyPayment - interestPaid;

 return principlePaid;

 }

 //Calculate new Principle

 private double calculateNewPrinciple(double principlePaid, double previousPrinciple){

 double newPrinciple = previousPrinciple-principlePaid;

 return newPrinciple;

 }

 //Calculate monthly Payment

 public void calculateMonthlyPayment(){

 numberOfMonths = years*12;

 numberOfDays = years*365;

 //Divide the yearly interest rate of 5.75% by 12 to get monthly ineterst rate

 // Multiply the number of years by 12 to get the number of months

 //Formula for monthly payment: monthlyPayment = [P((1+r)^n)*r]/[(1+r^n)-1], where r and n are calculated as above.

 monthlyPayment = loanAmount*Math.pow(1 + interestRate/12, numberOfMonths) * (interestRate/12)/(Math.pow(1 + interestRate/12, numberOfMonths) -1);

 }

 //Return Mortgage Information, Loan Amount: 200,000, Interest Rate: .0575, Term 360 months and monthly Payment

 public String toString(){//strings are used to store text and variables

 //2 decimal places

 form.setMaximumFractionDigits(2);

 form.setMinimumFractionDigits(2);

 return "Mortgage Information" + "\n"+ "Loan Amount: $" + form.format(loanAmount) + "\n" + "Interest Rate: " + interestRate + "%" + "\n" + "Term: "

 + (years*12) + " months" + "\n" + "Monthly Payment: $" + form.format(monthlyPayment);//Using the round to two decimal places

 }

 //Drive Vector

 public void deriveMatrix(){

 int counter = 1;

 double Balance;

 double Interest_Payment;

 double Interest_Paid;

 double Principle_Paid;

 String payDate = "15JUL04";

 while(counter <= numberOfMonths){

 //Payment# is the month number

 //Principle is constant at $200,000

 //Monthly Payment is calculated from calculateMonthlyPayment

 //Pay Date is fixed at 15JUL04

 //Interest Payment = loanAmount*interestRate/12;

 //Interest Paid = Interest Payment

 //Principle Paid = Principle - Balance

 Balance = Math.round((loanAmount*(1+interestRate/12) - monthlyPayment)*100.00/100.00); //Calculation of Balance

 Interest_Payment = Math.round((loanAmount*interestRate/12)*100.00/100.00); //Calculation of Interest

 Interest_Paid = Interest_Payment;

 Principle_Paid = loanAmount - Balance;

 //Define the rows

 Row rows = new Row(counter, loanAmount, monthlyPayment, payDate, Balance, Interest_Paid, Principle_Paid);

 firstRow.addElement(rows);

 counter++;

 loanAmount = Balance;

 }//end of while(counter <= numberOfMonths)

 }

 //print schedule and scroll

 public void printMatrix(){

 System.out.println();

 System.out.println("Pay# Principle MonthlyPayment PayDate Balance IntPaid PrinPaid");

 int scrollCounter, counter = 0;

 while (counter < numberOfMonths){

 scrollCounter = 0;

 while(scrollCounter<30){

 System.out.println("" + (counter+1) + "\t" +firstRow.elementAt(counter));

 counter++;

 scrollCounter++;

 }//end of while(scrollCounter<30)

 System.out.println("Press Enter to continue..");

 //A stream is an abstraction of the continuous one-way flow of data

 BufferedReader br = new BufferedReader(new InputStreamReader(System.in), 1);

 String str = "";

 //try and catch exceptions

 try {

 str = br.readLine();

 }

 catch (IOException ioe) {

 System.out.println(ioe);}

 }//end of while (counter <= numberOfMonths)

 }

}//closing bracket

