$$\frac{dx}{dt} = \dot{x}$$

1. Solve by separation of variables and plot the solution to the ODE:

$$\dot{x} = 4x - 2; \ t \ge 1, \ x(1) = \frac{3}{4}$$

$$\dot{x} = -x \ln(x), t \ge 0, x(0) = x_0$$

3. For the given graph, re-sketch a graph for x_{01} and indicate the system progress (using arrows and EXPLAIN) from x_{01} as $t \rightarrow \infty$. Identify any critical points as stable, unstable, or semi-stable (EXPLAIN). Repeat for x_{02} , x_{03} , and x_{04} .

- 4. Draw and label the phase diagram $(\dot{x} \ vs. \ x)$. Indicate the system progress (using arrows and EXPLAIN). Identify any critical points as stable, unstable, or semi-stable (EXPLAIN): $\dot{x} = \alpha_1 x - \alpha_2$, $\alpha_1 > 0$, $\alpha_2 > 0$.
- 5. Draw and label the phase diagram ($(\dot{x} \ vs. \ x) \ for \ \dot{x} = 3x^2 9x$. Indicate the system progress (using arrows and EXPLAIN). Identify any critical points as stable, unstable, or semi-stable (EXPLAIN).
- 6. A harvesting model is represented by: $\dot{x} = \alpha_1 x \alpha_2 x^2 h$; $\alpha_1 > 0$, $\alpha_2 > 0$, h > 0.
 - a. Draw the phase diagram ($(\dot{x}vs.x)$) and label the values of the intercepts and the point of maximum \dot{x} .
 - b. Identify any critical points as stable, unstable, or semi-stable (EXPLAIN).
 - c. What values of h doom the crop to complete depletion (EXPLAIN)?
 - d. What is the maximum value of h that produces a critical crop level (EXPLAIN).
 - e. Plot \dot{x} vs. x for maximum h and determine if the critical point is stable, unstable, or semi-stable (EXPLAIN).
 - f. How does the maximum value of h change if α_1 , the reproduction rate parameter, increases (EXPLAIN)?
 - g. How does the maximum value of h change if α_1 , the reproduction rate parameter, decreases (EXPLAIN)?
- 7. $\dot{x} = \alpha_1 x \alpha_2$ If x has units of ounces and \dot{x} has units of ounces per second, what are the units of α_1 and α_2 (EXPLAIN)?