(i) Not everything with indices is a tensor. If  $\phi$  and  $A^{\mu}$  transform as a scalar and a contravariant vector under *general* coordinate transformations, respectively, then show that

$$C_{\mu} := \frac{\partial \phi}{\partial x^{\mu}}$$

is a tensor, but that

$$T^{\mu}_{\ \nu} := \frac{\partial A^{\mu}}{\partial x^{\nu}}$$

is not. [Hint: apply the transformation laws for  $\phi$ ,  $A^{\mu}$  and  $\partial_{\nu}$  to determine how the RHS transforms in each case.]

(ii) Let  $g^{\mu\nu}$  be a symmetric tensor function under general coordinate transformations, i.e.,  $g^{\mu\nu} = g^{\nu\mu}$ , and let  $h_{\mu\nu}$  be a tensor that satisfies

$$g^{\mu\nu}h_{\nu\lambda} = \delta^{\mu}_{\ \lambda}$$

in a particular set of coordinates.

- (a) Is the above relation satisfied in all sets of coordinates? Why or why not? [Hint: see Eq. (2.4) of the notes.]
- (b) By multiplying each side of the above relation by  $h_{\mu\alpha}$ , show that  $h_{\alpha\lambda} = h_{\lambda\alpha}$ , i.e., that  $h_{\mu\nu}$  is also symmetric.
- (c) By differentiating each side of the above relation with respect to  $x^{\alpha}$ , show that

$$\frac{\partial h_{\beta\nu}}{\partial x^{\alpha}} = -h_{\beta\mu}h_{\nu\lambda}\frac{\partial g^{\mu\lambda}}{\partial x^{\alpha}}.$$

[Warning: never use the same dummy index more than twice in a given expression. Otherwise the summation convention becomes inconsistent. For example,  $(A^{\mu}B_{\mu})^2 = A^{\mu}B_{\mu}A^{\nu}B_{\nu} \neq A^{\mu}B_{\mu}A^{\mu}B_{\mu}$ , if the latter expression is interpreted as implying a sum over  $\mu$ .]