- Calculate the energy released when a thermal neutron is captured by the nucleus of a 235 U atom that then fissions to produce 137 Cs, 97 Zr and two neutrons. [Atomic masses: n=1.0087u, 235 U=235.0439u, 137 Cs =136.9070u, 97 Zr =96.9110u; 139 1u=931.48 MeV/c²]
- (g) Show that the reactor equation $\nabla^2 \Phi + 3(k_{\infty} 1)\overline{\Sigma}_A \overline{\Sigma}_S \Phi = 0$ has solutions of the form $\Phi = A\cos(k_1 x)\cos(k_2 y)\cos(k_3 z)$,

where x, y, z are the variables and k_1 , k_2 , k_3 are constants.

If the reactor takes the form of a cube of side a, with the origin for the xyz coordinate system at the cube centre, show that $k_1=k_2=k_3=\pi$ / a and that

$$(k_{\infty}-1)\overline{\Sigma}_{A}\overline{\Sigma}_{S} = \frac{\pi^{2}}{a^{2}}.$$