
1. (a) The diagrams below represent the polarization states of light. In each case the wave is traveling along the x-axis in the positive x direction.

- (i) Which diagram represents linear polarized light at 45°?
- (ii) Which diagram represents left circular light? Explain.
- (iii) Which diagram represents un-polarized light?
- (b) Consider the following expression for a harmonic wave travelling in the positive x direction,

$$\Psi(x,t) = A\sin k(x - \nu t).$$

Identify each of the parameters in the above expression, and show that this wave is a solution of the differential wave equation,

$$\frac{\partial^2 \Psi}{\partial x^2} = \frac{1}{\nu^2} \frac{\partial^2 \Psi}{\partial t^2}.$$

(c) Consider the following two harmonic waves:

$$E_1 = 2\cos\omega t$$

and

$$E_2 = 7\cos(\pi/4 - \omega t).$$

- (i) Show each of these waves in a phasor diagram.
- (ii) In the same diagram, show the wave that results from the addition of these two harmonic waves.
- (iii) Determine the mathematical expression for the resultant wave. What sort of wave is the resultant? Use the expression you derived to justify your answer.