- 20. Verify both algebraically and geometrically that the following properties of vector arithmetic hold. (Do so for n = 2 if the general case is too intimidating.)
 - a. For all $x, y \in \mathbb{R}^n$, x + y = y + x.
 - b. For all \mathbf{x} , \mathbf{y} , $\mathbf{z} \in \mathbb{R}^n$, $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$.
 - c. $\mathbf{0} + \mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$.
 - d. For each $\mathbf{x} \in \mathbb{R}^n$, there is a vector $-\mathbf{x}$ so that $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$.
 - e. For all $c, d \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$, $c(d\mathbf{x}) = (cd)\mathbf{x}$.
 - f. For all $c \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $c(\mathbf{x} + \mathbf{y}) = c\mathbf{x} + c\mathbf{y}$.
 - g. For all $c, d \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$, $(c+d)\mathbf{x} = c\mathbf{x} + d\mathbf{x}$.
 - h. For all $\mathbf{x} \in \mathbb{R}^n$, $1\mathbf{x} = \mathbf{x}$.
- 21. a. Using only the properties listed in Exercise 20, prove that for any $\mathbf{x} \in \mathbb{R}^n$, we have $0\mathbf{x} = \mathbf{0}$. (It often surprises students that this is a consequence of the properties in Exercise 20.)
 - b. Using the result of a, prove that $(-1)\mathbf{x} = -\mathbf{x}$. (Be sure you didn't use this fact in your proof of a!)