Black-box testing technologies

We have discussed software quality assurance by means of a continuous improvement process in the last few lectures. In the remaining part of this module, we discuss techniques for black-box software testing. Our discussions will mainly concentrate on the fault model for software testing developed by James Whittaker (see references Whittake et al (2001), Whittake (2000), Whittake (2001), Whittake (2002), and Whittake et al (2003)).

In black-box testing scenarios, testers normally work from a description of the product’s behavior consisting of written specification, requirement document, user manual etc. Executed in a real or simulated environment, they explore the product’s functionality in a methodical and intelligent manner, and determine its failure or success. Any user of a software package can stumble across bugs. So what is the difference between testers and users? The answer is in the fact that testing requires efficiency (finding bugs faster than normal users), effectiveness (finding bugs that users care about and that the developer will fix), and thoroughness (leaving no stone unturned). In order to be an effective tester, one needs to clearly

1. understand software’s behavior,

2. understand software’s environments, and

3. understand software’s capabilities.

Understanding Software Behavior

Even for a small software package, there are too many inputs, input variables, internal states, and their combinations. A tester could not test all of them, so some functionalities have to be left untested. To perform this crucial decision-making process effectively, testers need to understand what software is doing and what things could cause software to fail.

Better testers have good intuition guiding them through tests; they know where the bugs commonly hide and know how to locate them efficiently. The “fault model” developed by James Whittake et al (2001), provides the guideline for a tester to achieve these goals. Understanding where bugs are to be found requires that we understand how and why software fails.

In order to understand how and why software fails, we need to learn about two issues (essential to the fault model):

· Software environments. These are very complex (involving human beings, input files, etc.) and many developers do not understand this well. In most cases, the bugs arise from the fact that software misinterprets or cannot handle its environment.

· Software capabilities. That is, what does software provide? In some cases, the bugs arise from the fact that software incorrectly performs one or more of its functions.

Understanding Software Environments

Software exists in an environment in which it communicates with its users by accepting inputs and producing outputs. Although this is not intuitive, humans are not the users for most software systems. Instead, humans use a keyboard, mouse, etc. to pass instruction to the device drivers of these hardware components. These inputs pass through layers of operating systems and APIs until one such API generates an event that the application under test receives. For modern applications that reside completely within the host operating systems, their environments are very complicated. For example, when one invokes the Microsoft PowerPoint application, there are 59 calls made to 29 different kernel functions (excluding GetTickCount, which is called nearly 700 times), and any of these calls could fail. When PowerPoint changes a font, two kernel functions are called 10 times and any of these calls could fail. There are generally four classes of users:

1. The human interface (UI). There are two main types of human interfaces

a. GUI: inputs arriving through GUI controls from the mouse or keyboard. Some controls have only simple events, some controls can deliver data that must be validated, and some controls affect other controls. The order in which controls are exercised is also an important consideration. It is important to consider how human inputs actually get transmitted to software, since there is more to input delivery than typing at a keyboard. Developers may assume that users follow certain paths to exercise these controls (but the fact is that users do not).

b. The API: inputs arriving from programs. Some parameters are simple while others contain or point to data. Parameter combinations have to be considered also. The sequence in which specific API calls are made is also an important consideration, and testers need to test these relationships also.

2. The kernel interface (the operating system user). The kernel user is very complicated. For example, the Windows kernel exports over 1000 functions and each function has at least two return values. Too often developers trust the kernel explicitly. If the application asks for memory, it does not expect “sorry, it is gone!” Developers need to process this error case, but if they forget, then some serious bugs remain hidden. In testing environments, one may run a group of background applications to slow the performance and to simulate resource contention. But defects found in these ways are not necessarily repeatable. Some testing tools may help in this respect.

3. The software interface. Examples of software users are: making SQL queries to an external database, using a socket API to manage a network connection, using a math library, and using third party GUI controls. The problems for software users are that it may pass unexpected return values, pass bad data (wrong type or format), or crash (e.g., core dump). The application under testing needs to deal with these errors. Again, if the developer forgets, then some serious bugs may remain hidden.

4. The file system interface. Files are users and their contents are inputs. File contents can have the wrong permissions, get deleted by another user, be corrupt, be bad data, or contain misplaced delimiters. The application under testing needs to deal with these errors.

Understanding Software Capabilities

There are four basic software capabilities: accepting input, producing output, storing data, and performing computation. However, software can combine these capabilities to perform very complicated tasks. It is not realistic to test these complicated tasks from the beginning. Instead, one may choose to test each capability separately.

1. Testing input. Software should only accept input that it can handle. But ensuring that this is the case is problematic. In order for the testing to be more effective, we need to understand how software filters erroneous input.

a. GUI: by preventing input data of incorrect type or input data that is too small or too large, and by forcing the user through specific control flow paths

b. Error checking code: Using “if” statements to ensure that inputs received can actually be processed. However, the error checking code can also have errors, and writing error code means diverting developers’ attention from the main-line code (thus introducing more faults).

c. Exception handlers: Using exception handlers to fail gracefully. However, this is extremely difficult and it is a very difficult task to make sure that error routines reset the state and clean up side-effects.

2. Testing output. Software should generate only those outputs that are acceptable to its users; displayed data must fit in its display area; and software should not be able to pass incorrect data values. Testers need to understand what wrong answers are and ensure that software does not produce them.

3. Testing data. Inputs and computation results are often stored internally. Software will fail if it stores illegal data. Thus, stored data values must be acceptable individually and in combination with other data. The major difference between data and inputs is that data is persistent. Data retrieval, data modification, and data access must be tested.

4. Testing computation. Software can correctly filter inputs, validate outputs and store data and still fail. For example, x=x+1 will fail if it is executed enough times to overflow the value x. Correct computation depends on operators, operands and result. Another aspect of computation is feature interaction. Features can interact in ways that affect computation, and one feature can get in the way of another feature’s computation.

In summary, black-box testing consists of establishing an environment in which to execute the system under test then driving the system to exhibit its capabilities.

Examples of Testing Software’s Capabilities and Environments by Inserting Faults

Testers can attack each capability by staging situations that commonly cause failure. The books Whittake (2001) and Whittake (2002) reported many bugs in Microsoft software (e.g., Word, Excel, PowerPoint, etc.) using the following attacking methods. (The reader is referred to these books to learn about the specific attacks.)

Exploring inputs

Banging on the keyboard is largely a waste of time. A tester with clear goals is more likely to find a problem than a tester who is simply hacking away. Testers must learn to target problematic input scenarios. Typical input attacks discussed Whittake (2002) are:

1. Force all error messages to occur. The underlying principle relevant to this attack is that additional code must be written for error cases, and writing error code takes the programmer’s attention away from writing functional code. A bug in Microsoft Word 2000 was revealed in Whittake (2002) by implementation of an attack that forced Word to show the same error message twice.

2. Force the software to establish default values. All software uses variables and they have default values. The lifecycle of a variable is: declaration, initialization, and use. Variables must be initialized before they are used, otherwise software may crash. This attack will help testers to find software bugs due to un-initialized variables. Whittake (2002) reported several of these kinds of bugs in Microsoft Excel.

3. Explore allowable character sets and data types. Special cases require special handling, so only allowable characters and data types are used. However, software may fail if developers fail to recognize a special case, put too much trust in interface controls, or fail to handle errors properly (we’ve already discussed that error code is hard to get right).

4. Overflow input buffers. Buffer-overflow attacks have been the major tools for many reported attacks. The reason for these kinds of attacks is that developers fail to constrain the amount of text the software will accept in an input sting, so when the text is read, input memory and fixed-sized buffers are overflowed. The attack reported in Whittake (2002) includes attacks on the following functions of Microsoft Word: Open Word, and choose Edit/Find. Type in any string in the Find field and type in a long string of 256 characters in the Replace field; press Enter and Word crashes.
See http://www.imperva.com/application_defense_center/glossary/buffer_overflow.html
5. Find inputs that interact with other inputs. Input relationships are hard to determine for both testers and developers. The logic involved in handling a single erroneous input is hard enough, and multiple error cases often require complex nested IF statements. Code changes make this situation worse. Thus, it is not surprising to find bugs using the different input combinations.

6. Repeatedly apply the same input/input sequence. The underlying principle for this kind of attack is that repeated application of some input sequence may exhaust the resources and let the application crash.

Exploring outputs

Typical output attacks discussed in Whittake (2002) are:

1. Forcing different outputs to be generated for each input. The underlying principle relevant to this attack is that inputs that cause different outputs require complex logic to be coded (depending on prior inputs or state of the software), and complexity leads to bugs.

2. Forcing invalid outputs to be generated. Just as testers can misunderstand the problem domain, so can developers. When this happens, they write bugs. Whittaker reported an example of this attack in Whittake (2002): let the NT4.0 clock show “February 29, 2001”.

3. Forcing output properties to change. Generating the output once tests that the software works with initial data settings. These are settings that the developer has established and anticipated (e.g., user changes to different character sets). But changing the output ensures that the software will work in a user-defined setting that might not be anticipated by developers.

4. Forcing the screen to be refreshed. Refreshing the contents of a window after those contents have changed is problematic, since it is difficult for developers to decide how often to refresh the screen. If refresh is done too often then performance degrades and the screen flickers to annoy the user, but if refresh happens too seldom, then the screen becomes messy.

Exploring data

Typical data attacks discussed in Whittake (2002) are:

1. Applying inputs using a variety of initial conditions

2. Forcing a data structure to store too many/too few values

3. Investigating alternate ways to modify internal data constraints

Exploring computation

Typical computation attacks discussed in Whittake (2002) are:

1. Experimenting with invalid operand and operator combinations

2. Exploiting recursion

3. Forcing computational results to be too large or too small

4. Finding features that share data or interact poorly (you may try to find problems when combining footnotes and dual columns on a single page in Word 2000).

Exploring the environments

In the above, we have discussed techniques for testing the software by breaking its capabilities. In the following, we discuss techniques to break software by modifying its environments. As we have mentioned in the beginning of this section, the environment of a software package consists of four users: the human user, file user, kernel user, and other software user. James Whittaker proposed the following techniques (attacks) to test the software’s robustness against bad environments:

1. Fill the file system to its capacity (file user)

2. Force the media to be busy or unavailable (file user)

3. Damage the media (file user)

4. Assign an invalid file name (file user): e.g., too long name, invalid character set/format.

5. Vary file access permissions (file user)

6. Vary/corrupt file contents (file user)

7. Inject realistic faults to kernel or other software calls (kernel user/other software user)

8. Monitor other software or kernel calls (kernel user/other software user)

9. Simulate by replaying the interesting scenarios (kernel user/other software user)

These black-box testing techniques for exploring the software environments could be carried out by simulating these environments. However, in order to generate software defects that are repeatable by others, it is preferable to use some testing tool such as Holodeck (commercial version or trial version) or Canned Heat. Canned Heat (an earlier freeware version of Holodeck) can be downloaded from http://www.se.fit.edu/CannedHEAT/Downloads.htm and Holodeck (one month trial version) can be downloaded from http://www.sisecure.com/.

Testing Software Security

A fault model is a way of thinking about how and why software fails. In the previous section, we introduced a behavior-based fault model whereby we understand software from its behaviors. This week, we are interested in software faults that have security implementations. Software testing executes software applications to determine whether they meet the requirements and specifications. What, then, is the difference between security testing and software testing? In classical software testing activities, testers think through the selection of input scenarios that are likely to force the software to fail and look for the symptoms of software failure to know when an application has failed. Security vulnerabilities do not fit in the description of these classical bugs. James Whittaker described the security bugs as in Figure 1 from Whittake (2001).

 SHAPE * MERGEFORMAT

Figure 1. Security Bugs

Most Security Bugs

Intended Behavior

Actual Behavior

Traditional Bugs

