A long slender rod is impulsively loaded sending a uniaxial (1-D) stress wave down the rod. Hence, the only non-zero stress is σ_{II} .

linear, elastic, isotropic

wave $u(x_l,t) = \text{axial displacement}$

Assuming small strain theory derive a partial differential equation for the axial displacement $u(x_1,t)$.

Neglect body forces!