An infinite cylindrical rod has a uniform volume charge density p (where p > 0).

The cross section of the rod has a radius r_o .

Find the magnitude of the electric field, E, at a distance, r, from the axis of the rod. Assume that $r < r_0$

$$\underbrace{E = \frac{rp}{2\xi_a}}_{\text{Answer}}$$

If you repeated the calculation for $r = r_o$, you would find that the magnitude of the electric field on the surface of the rod is:

$$E_{surface} = \rho \frac{fo}{2\mathcal{E}_o}$$

Rewrite the expression for E_{surface} in terms of λ , the linear charge density of the rod.

Express the answer in terms of λ , r_0 , and ξ . The answer should <u>not</u> contain the variable p.

E_{surface} =