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Therefore, M C C C D. However, since M is maximal and r + M # M,
it follows that C = D, and so B = D/M. Thus, there exists an element
s+ M € D/M for which (r+ M)(s+ M) =1+ M, and so r + M has an
inverse in D/M. Therefore, D/M is a field. Now, suppose D/M is a field.
Let B be an ideal of D for which M € B C D. We know by Proposition
1.8 that p(B) is an ideal of D/M, and since the only ideals in a field are
the field itself and {0}, it follows that either p(B) = M or ¢(B) = D/M.
Thus, either B= M or B = D, and M is maximal. [ ]

By combining the results of Theorems 1.11 and 1.12, we obtain the
following theorem,

Theorem 1.13 Suppose a is an element in a Euclidean domain D. Then
the following statements are equivalent.

1. a s irreducible in D.
2. (a) ts mazmmal in D.

3. D/(a) is a field.

1.4 Finite Fields

Finite fields play an important role in several of the applications that we
will present in this book. In this section, we will deseribe the theoretical
basis of constructing finite fields.

It can easily be shown that the ring Z, = {0,1,2,...,p—1} for prime p
is a field with the usual operations of addition and multiplication modulo p
(i.e., divide the result by p and take the remainder). This shows that there
are finite fields of order p for every prime p. In the following discussion, we
show how the fields Z, can be used to construct finite fields of order p” for
every prime p and positive integer n.

Suppose m is an irreducible element in a Euclidean domain D, and let
B = (m). Then by Theorem 1.13, we know that D/B must be a field, If D
is the ring Z of integers and m > 0, then m must be a prime p. Note that
if we perform the addition and multiplication operations in D/B without
including B in the notation, these operations will be exactly the addition
and multiplication operations in Z,. Thus, we can view D/B as Z,,.

Now, suppese D is the integral domain Z,[z] of polynomials over Z,, for
prime p, and let B = (f(x)) for some irreducible polynomial f(x) of degree
n in D. Then again by Theorem 1.13, we know that IJ/B must be a field.
Each element in D/B is a coset of the form g(x) + B for some g(z) € Z,[z].
Since Zy[z] is a Euclidean domain, there exists r(z) € Zy[z] for which
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9(z)+ B = r(z) + B with either r(x) = 0 or deg(r(z)) < n. Therefore, each
element in D/B can be expressed as r(z) + B for some r(z) € Z,[z] with
either r(z) = 0 or deg(r(z)) < n. Since a polynomial r(z) Zp[z] with
either r(z) = 0 or deg(r(z)) < n can contain up to n terms, and each of
these terms can have any of p coefficients (the p elements in Zy), there are
P" polynomials r(z) € Zy[z] with either r(z) =0 or deg(r(z)) < n. Thus.
the field D/B will contain p" distinct elements. The operations on this field
are the usual operations of addition and multiplication modulo f(z) (ie.,
divide the result by f () and take the remainder). For convenience, when
we write elements and perform the addition and multiplication operations
in D/B, we will not include B in the notation. That is, we will express the
elements r(z) + B in D/B as just r(z).

Because it is possible to find an irreducible polynomial of degree n over
Zy, for every prime p and positive integer n, the comments in the preceding
paragraph indicate that there are finite fields of order p™ for every prime p
and positive integer n. It is also true that all finite fields have order p™ for
some prime p and positive integer n (see Theorem 1.14).

Example 1.9 Suppose D = Zs|z], and let B = (f(z)) for the irreducible
polynomial Fz)=2>+z243¢ Z3[z]. (Note: We could very easily verify
that f(x) is irreducible in Z3[z] by showing that fla) # 0 for all a € Z3.)
Then the field D/B will contain the 32 = 9 polynomials of degree less than
2in Zg[z]. That is, D/B = {0,1,2 2,241,242, 2z, 2z+1, 20+2}. To
add elements in D/B, we simply reduce the coefficients in Z5. For example,
(224+1)+ (22 + 2)=4z4+3=2. To multiply elements in D/B, we can use
several methods. One method is to divide the product by f(z) and take the
remainder. For example, to multiply 22 + 1 and 2z + 2 in D/B, we could
form (22+1)(22+2) = 422 4 62+ 9 — 2*+2. Dividing 22 +2 by f(z) yields
a quotient of 1 and a remainder of —z — 2z. Thus, (2z + 1)(2z + 2)=2c
in D/B. Another method for multiplying elements in D/B uses the fact
that 22 + 2 4+ 2 = ¢ in D/B. Thus, 22 = —p _ 2=2»41in D/B, an
identity that can be used to reduce powers of z in D/B. For example, we
can also compute the product of 2z + 1 and 2z + 2 in D/B by forming
(22 +1)(22 + 2) = 422 4 62+ 2 = 22 +2=(22+1)+2=2z. We will
describe a third method for multiplying elements in D/B next, and then
illustrate this method in Example 1.10. B

A fundamental fact regarding finite fields is that the nonzero elements
in every finite field form a cyclic group under multiplication (see Theorem
1.15). Suppose D = Zy[z] for some prime p, and let B = (f(z)) for
some irreducible polynomial f(z) € D. For the field F = D/B, if z is
a cyclic generator for the nonzero elements F* in F, then f(z) is said to be
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product of 2z and  + 2 in D/B as follows.

(22)(x +2) = 2’z =z = B3 =17 =22+2
Other products of nonzero elements in D/ B can be computed similarly. W

Example 1.11 Suppose D = Zs|z], and let B = (f(z)) for the irreducible
polynomial f(x) = x? + 1 € Zj[x]. Since f(z) is irreducible of degree 2 in
Zs|x), then D/B is a field of order 3% = 9, with the exact same elements as
the field in Example 1.9. However, note that #? = —1=2in D/B, and so
44 =4 = 1in D/B. Thus, it follows that computing powers of x will not
generate all 8 nonzero elements in D/B. Therefore, f(z) = x? + 1 is not
primitive in Zs|z], and we cannot compute all possible products of nonzero
elements in D/B using the method illustrated in Example 1.10. However,
we can still compute all possible products in D/B using either of the two
methods illustrated in Example 1.9. 3]

We close this section by proving a pair of fundamental results we have
mentioned regarding finite fields.

Theorem 1.14 Suppose F is a finite field. Then |F| = p" for some prime
p and positive integer n.

Proof. Let H be the additive subgroup of F generated by 1. Suppose
that |H| = mn for some positive integers m,n with m # 1 and n # 1. Then
0 = (mn)1 = (m1)(nl). However, since ml £ 0 and nl # 0, this contra-
dicts the fact that F is a field. Thus, |H| =p for some prime p. That is,
H = Z, for some prime p. The field F' can be viewed as a vector space over
H with scalar multiplication given by the field multiplication, and so F' has
a basis with a finite number of elements, say n. The order of F is then the
number p” of linear combinations of these basis elements over Zy. [ ]

Theorem 1.15 Suppose F is a finite field. Then the nonzero elements F*
in F form a cyclic multiplicative group.

Proof. Clearly, F* is an abelian multiplicative group. To show that F™*
is cyclie, we use the first of the well-known Sylow Theorems, which states
that for any finite group G of order n, if p* divides n for some prime p and
positive integer k, then G contains a subgroup of order p*. Suppose |F*|
has prime factorization pyiph?---py ', and let S, be subgroups of order p;"

in F* for each i = 1,2,..., t. Also, let k; = p™ ' for each i = 1,2,..., t.

Then if S; is not cyclic for some 1, it follows that a® = 1 for all a € S;.
Thus, f(z) = 2* — 1 has p{"* roots in F, a contradiction. Therefore, each
S; must have a cyclic generator a;. Let b = ajaz - --a;. Since b has order

|F*|, then b is a cyclic generator for F*. (]
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