Exmaple 1-1

public class Clock

{

private int hr;
//store hours

private int min;
//store minutes

private int sec;
//store seconds

//Default constructor

//Postcondition: hr = 1; min = 0; sec = 0

public Clock ()

{

setTime (0, 0, 0);

}

//Constructor with parameters, to set the time

//The time is set according to the parameters.

//Postcondition: hr = hours; min = minutes;

//

 sec = seconds

public Clock (int hours, int minutes, int seconds)

{

setTimes (hours, minute, seconds);

}

//Method to set the time

//The time is set according to the parameters.

//Postcondition: hr = hours; min = minutes;

//

 sec = seconds

public void setTime (int hours, int minutes, int seconds)

{

If (0 <= hours && hours < 24)

 hr = hours;

else

 hr = 0;

If (0 <= minutes && minutes < 60)

 min = minutes;

else

 min = 0;

If (0 <= seconds && seconds < 60)

 sec = seconds;

else

 sec = 0;

}

//Method to return the hours

//Postcondition: the value of hr is returned

public int getHours ()

{

return hr;

}

//Method to return the minutes

//Postcondition: the value of min is returned

public int getMinutes ()

{

return min;

}

//Method to return the seconds

//Postcondition: the value of sec is returned

public int getSeconds ()

{

return sec;

}

//Method to print the time

//Postcondition: Time is printed in the form hh:mm:ss

public void printTime ()

{

If (hr < 10)

 System.out.print (“0”);

System.out.print (hr + “:”);

If (min < 10)

 System.out.print (“0”);

System.out.print (min + “:”);

If (sec < 10)

 System.out.print (“0”);

System.out.print (sec);

}

//Method to increment the time by one second

//Postcondition: The time is incremented by one second

//If the before-increment time is 23:59:59, the time

//is reset to 00:00:00

public void incrementSeconds ()

{

sec++;

If (sec > 59)

{

sec = 0;

incrementMinutes (); //increment minutes

}

}

//Method to increment the time by one minute

//Postcondition: The time is incremented by one minute

//If the before-increment time is 23:59:53, the time

//is reset to 00:00:53

public void incrementMinutes ()

{

min++;

If (min > 59)

{

min = 0;

incrementHours (); //increment hours

}

}

//Method to increment the time by one hour

//Postcondition: The time is incremented by one hour

//If the before-increment time is 23:45:53, the time

//is reset to 00:45:53

public void incrementHours ()

{

hr++;

If (hr > 23)

 hr = 0;

}

//Method to compare two times

//Postcondition: Returns true if this time is equal to

 otherClock; otherwise returns false

public boolean equals (Clock otherClock)

{

return (hr == otherClock.hr

&& min == otherClock.min

&& sec == otherClock.sec);

}

//Method to copy time

//Postcondition: The instance variables of otherClock

//

 copied into the corresponding data

//

 are members of this time.

//

 hr = otherClock.hr;

//

 min = otherClock.min;

//

 sec = otherClock.sec;

public void makeCopy (Clock otherClock)

{

hr = otherClock.hr;

min = otherClock.min;

sec = otherClock.sec;

}

//Method to return a copy of time

//Postcondition: A copy of the object is created and

//

 a reference of the copy is returned

public Clock getCopy ()

{

Clock.temp = new Clock ();

temp.hr = hr;

temp.min = min;

temp.sec = sec;

return temp;

}

}
Develop and execute programs for this exercise. Submit your results to COL.

1. In the example 1-1, the class Clock was designed to implement the time of day in a program. Certain applications, in addition to hours, minutes, and seconds, might require you to store the time zone. Derive the class ExtClock from the class Clock by adding a data member to store the time zone. Add the necessary methods and constructors to make the class functional. Also, write the definitions of the methods and the constructors. Finally, write a test program to test your class.

Example 2-1

public class Date

{

private int dMonth;

//variable to store the month

private int dDay;

//variable to store the day

private int dYear;

//variable to store the year

//Default constructor

//The instance variables dMonth, dDay, and dYear are set to

//the default values.

//Postcondition: dMonth = 1; dDay = 1; dYear = 1900;

public Date ()

{

dMonth = 1;

dDay = 1;

dYear = 1900;

}

//Constructor to set the date

//The instance variables dMonth, dDay, and dYear are set

//according to the parameters.

//Postcondition: dMonth = month; dDay = day;

//

 dYear = year;

public Date (
int month, int day, int year)

{

 dMonth = month;

 dDay = day;

 dYear = year;

}

//Method to set the date

//The instance variables dMonth, dDay, and dYear are set

//according to the parameters.

//Postcondition: dMonth = month; Dday = day;

//

 dYear = year;

public void set Date (int month, int day, int year)

{

dMonth = month;

 dDay = day;

 dYear = year;

}

//Method to return the month

//Postcondition: The value of dMonth is returned.

public int getMonth ()

{

return dMonth;

}

//Method to return the day

//Postcondition: The value of dDay is returned.

public int getDay ()

{

return dDay;

}

//Method to return the year

//Postcondition: The value of dYear is returned.

public int getYear ()

{

return dYear;

}

//Method to return the date in the form mm-dd-yyyy

public String toString ()

{

return (dMonth + “-“ + dDay + “-“ + dYear);

}

}
Develop and execute programs for this exercise. Submit your results to COL.

2. In the example 2-1, the class Date was designed to implement the date in a program, but the method setDate and the constructor with parameters do not check whether the date is valid before string the date in the data members. Rewrite the definitions of the method setDate and the constructor with parameters so that the values of month, day, and year are checked before storing the date into the data members. Add a method is LeapYear to check whether a year is a leap year. Then, write a test program to test your class.
