Simplify

Original Function

to confirm your results.

Function **31.** $f(x) = \frac{3}{x^2}$

32. $f(t) = 3 - \frac{3}{5t}$

34. $y = 3x^3 - 6$ **35.** $y = (2x + 1)^2$

 $\sqrt{36}$. $f(x) = 3(5-x)^2$

 $\sqrt{38}$. $g(t) = 2 + 3 \cos t$

 $37. \ f(\theta) = 4\sin\theta - \theta$

39. $f(x) = x^2 + 5 - 3x^{-2}$

33. $f(x) = -\frac{1}{2} + \frac{7}{5}x^3$

29. $y = \frac{\sqrt{x}}{x}$

30. $y = \frac{4}{x^{-3}}$

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 31–38, find the slope of the graph of the function at the given point. Use the derivative feature of a graphing utility

In Exercises 39-52, find the derivative of the function.

41. $g(t) = t^2 - \frac{4}{t^3}$ $\sqrt{42.} \ f(x) = x + \frac{1}{v^2}$

43. $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ $\sqrt{44.} \ h(x) = \frac{2x^2 - 3x + 1}{x}$

45. $y = x(x^2 + 1)$ **46.** $y = 3x(6x - 5x^2)$ **47.** $f(x) = \sqrt{x} - 6\sqrt[3]{x}$ **48.** $f(x) = \sqrt[3]{x} + \sqrt[5]{x}$ **49.** $h(s) = s^{4/5} - s^{2/3}$ **50.** $f(t) = t^{2/3} - t^{1/3} + 4$

51. $f(x) = 6\sqrt{x} + 5\cos x$ **52.** $f(x) = \frac{2}{3\sqrt{x}} + 3\cos x$

In Exercises 53-56, (a) find an equation of the tangent line to the graph of f at the given point, (b) use a graphing utility to

graph the function and its tangent line at the point, and (c) use

the derivative feature of a graphing utility to confirm your

Rewrite

Differentiate

Point

(1, 3)

 $(\frac{3}{5}, 2)$

 $(0,-\frac{1}{2})$

(2, 18)

(0, 1)

(5,0)(0, 0)

 $(\pi, -1)$

40. $f(x) = x^2 - 3x - 3x^{-2}$

46. $y = 3x(6x - 5x^2)$

In Exercises 1 and 2, use the graph to estimate the slope of the tangent line to $y = x^n$ at the point (1, 1). Verify your answer analytically. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.

1. (a)
$$y = x^{1/2}$$

(b)
$$y = x^{2}$$

2. (a)
$$y = x^{-1/2}$$

(b)
$$y = x^{-1}$$

In Exercises 3-24, find the derivative of the function.

3.
$$y = 8$$

4.
$$f(x) = -2$$

5.
$$y = x^6$$

6.
$$y = x^8$$

7.
$$y = \frac{1}{x^7}$$

8.
$$y = \frac{1}{x^8}$$

9.
$$f(x) = \sqrt[5]{x}$$

10.
$$g(x) = \sqrt[4]{x}$$

11.
$$f(x) = x + 1$$

12.
$$g(x) = 3x - 1$$

11.
$$f(x) = x + 1$$

14.
$$y = t^2 + 2t - 3$$

13.
$$f(t) = -2t^2 + 3t - 6$$

15. $g(x) = x^2 + 4x^3$

16.
$$y = 8 - x^3$$

17.
$$s(t) = t^3 - 2t + 4$$

16.
$$y = 8 - x^3$$

18. $f(x) = 2x^3 - x^2 + 3x$

19.
$$y = \frac{\pi}{2} \sin \theta - \cos \theta$$

20.
$$g(t) = \pi \cos t$$

21.
$$y = x^2 - \frac{1}{2}\cos x$$

22.
$$y = 5 + \sin x$$

23.
$$y = \frac{1}{x} - 3 \sin x$$

$$24. \ y = \frac{5}{(2x)^3} + 2\cos x$$

In Exercises 25-30, complete the table.

	Original Function
25.	$y = \frac{5}{2}$

Rewrite

Differentiate

25.
$$y = \frac{3}{2x^2}$$

26.
$$y = \frac{2}{3x^2}$$

27.
$$y = \frac{3}{(2x)}$$

28.
$$y = \frac{\pi}{(3x)^2}$$

55. $f(x) = \frac{2}{\sqrt[4]{x^3}}$

Function **53.** $y = x^4 - 3x^2 + 2$

54. $y = x^3 + x$

(1, 2)

 $\sqrt{56}$, $y = (x^2 + 2x)(x + 1)$

(1, 6)

Point

(1,0)

(-1, -2)

18, 36, 38, 42, 44, 48, 50, 56

(or ope

the

 Δt

city

feet

ng a

locity of its

uence

t, and g

32 feet

bove the

al to 0.

s the water

16. So, the