Part One: The following is a textual representation of a tree where the first letter on each line is the root node of the tree or a subtree, followed by a parenthesis containing the child nodes of that node. For example, A is the root and B, C, and D are children of A. Show the sequence of elements encountered when the tree is traversed in preorder, inorder, and postorder.

A (B, C, D)
B (E, F)
D (J, K)
F (G, H, I)
J (L)
Part Two: One common way to implement a list is using an array. This project is to work with an ordered list. An ordered list is a list on which all the elements are stored in ascending order, which is a bit more efficient than an unordered list in performing some operations such as lookup. To preserve its property, one should always insert a new element at the proper position. The type definition and the lookup function for sorted list are shown below. You will create the following functions:

Insert (x, L) /* insert the new element x onto list L */

Delete (x, L) /* delete the element x from list L */

Print (L) /* print all of the elements on list L */

Retrieve (i, L) /* return the i-th element on list L */

Empty (L) /* return TRUE if L is empty */

Full (L) /* return TRUE if L is full */

Length (L) /* return the # of elements on list L */

In addition, develop a driver program similar to the one for the previous homework in order to test those functions that you defined.

typedef struct {
int A[MAX];
int length;
} LIST;
BOOLEAN Lookup (int x, LIST * pL)
{
int i = 0;
while (i < pL->length && x > pL->A[i])
i++;
return (i < pL->length && pL->A[i] == x);
}
