Let K be an $n x n$ matrix and λ a small number. Imitating

$$
\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots
$$

valid for small x , it is natural to define

$$
\log (1+\lambda K)=\lambda K-\frac{\lambda^{2}}{2} K^{2}+\frac{\lambda^{3}}{3} K^{3}-\cdots
$$

Explain why this makes sense. Prove

$$
\operatorname{trace} \log (1+\lambda K)=\log \operatorname{det}(I+\lambda K)
$$

Still with λ small so that everything makes sense. Hint: What is $I-\lambda K+$ $\lambda^{2} K^{2}-\lambda^{3} K^{3}+\cdots$?

Since this is an analysis problem, please be sure to be rigorous, and include as much detail as possible so that I can understand. Please also state if you are making use of some fact or theorem. Thanks!

