Let V be a C-space of all complex valued polynomials with an inner product

$$
\langle p, q\rangle=\int_{0}^{1} p(t) \overline{q(t)} d t .
$$

(i) Let p be a polynomial and let $\mathrm{Mp}: \mathrm{V}->\mathrm{V}$ be a linear operator that is given by $M_{p}(q):=p \cdot q$. Show that operator Mp has an adjoint and find it.
(ii) Let $\mathrm{D}: \mathrm{V}->\mathrm{V}$ be a linear operator that maps every polynomial in its derivative, by other words $D(p)=p^{\prime}$. Show that D has not an adjoint.

