- 7-13. (7.9) A parallel-plate capacitor with a nonuniform dielectric The dielectric of a parallel-plate capacitor has a permittivity that varies as \(\epsi_{r0} + ax\), where x is the distance from one plate. The area of a plate is \(\mathcal{A}\), and their spacing is s.
 - (a) Find the capacitance.
 - (b) Show that, if ϵ_r varies from ϵ_{r0} to $2\epsilon_{r0}$, then C is 1.44 times as large as if a were zero.
 - (c) Find P from the values of D and E for that case.
 - (d) Deduce the value of ρ_b .
 - (e) Now calculate ρ_b from the relation given in Prob. 7-2.
 - (f) Draw curves of E, ρ_b , and P as functions of x for $\epsilon_{r0} = 3.00$, $a = \epsilon_{r0}/s$, s = 1.00 millimeter when the applied voltage is 1.00 volt.

This is part of problem 7-2 just for reference for part (e) but it does not need to be solved.

Show that, in a nonhomogeneous dielectric, if $\rho_f = 0$, then $\rho_b = -(\epsilon_0/\epsilon_r)E \cdot \nabla \epsilon_r$.