7-13. (7.9) A parallel-plate capacitor with a nonuniform dielectric
The dielectric of a parallel-plate capacitor has a permittivity that varies as $\epsilon_{r 0}+$ $a x$, where x is the distance from one plate. The area of a plate is \mathscr{A}, and their spacing is s.
(a) Find the capacitance.
(b) Show that, if ϵ_{r} varies from $\epsilon_{r 0}$ to $2 \epsilon_{r 0}$, then C is 1.44 times as large as if a were zero.
(c) Find P from the values of D and E for that case.
(d) Deduce the value of ρ_{b}.
(e) Now calculate ρ_{b} from the relation given in Prob. 7-2.
(f) Draw curves of E, ρ_{b}, and P as functions of x for $\epsilon_{r 0}=3.00, a=\epsilon_{r 0} / s, s=1.00$ millimeter when the applied voltage is 1.00 volt.

This is part of problem 7-2 just for reference for part (e) but it does not need to be solved.
Show that, in a nonhomogeneous dielectric, if $\rho_{f}=0$, then $\rho_{b}=-\left(\epsilon_{0} / \epsilon_{r}\right) E \cdot \nabla \epsilon_{r}$.

