
 
Problem: 
 
Let V be a vector space of all real continuous function on closed interval [ -1, 1]. 
Let Wo be a set of all odd functions in V and let We be a set of all even functions in V. 
 

(i) Show that Wo and We are subspaces and then show that o eV W W= ⊕ . 
(ii) Find a projection mapping onto Wo parallel to We and projection mapping onto 

We parallel to Wo. 
(iii) Let L: V -> V be a mapping that transforms f from  V into function that is given by 
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L f x f t dt= ∫    Show that L is linear mapping and state whether the 

following is true or false: 
[ ]o eL W W⊂  and [ ]e oL W W⊂  

 
Solution:  

(i) o eV W W= ⊕  then every element in V can be written as 
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(ii) To find a projection mapping we use: 
N and P are R –submodules of M such that M N P= ⊕  and ϕ  that is 
projection mapping onto N parallel to P. Then  
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