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How do they come up with the equations in (308) mathematically? Why do (308)  give solutions to (285) and (286). Or why do (308)  determine whether (285) and (286) have 1 or more solutions? I don’t wonder about the proof for why the La place (309) introduced as a general equation later in the text has only 1 solution. Thanks
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which implies that

Now

However, if g f — 0 as T — 00 then we can neglect the first term on the right-hand side of the above equation and write
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A simple generalization of this result yields
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provided that g, f — 0 as x| — 00, ete. Thus, we can deduce that
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from Eq. (303), provided |C(r)| is bounded as |r| — 00. However, we have alrcady shown that V - C = 0 from sclf-consistency arguments, so the above equation implics that
V- W = 0, which is the desired result.

We have constructed a vector field F which satisfics Egs. (285) and (286) and behaves sensibly at infinity: 7.c.. [F| — 0 as |r| — 00, But, is our solution the only possible solution of
Eqs. (285) and (286) with sensible boundary conditions at infinity? Another way of posing this question is to ask whether there are any solutions of

VU =0, VW, @08
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where i denotes z, Y, or z, which are bounded at infinity. If there are then we are in trouble, because we can take our solution and add to it an arbitrary amount of a vector field with

Zero divergence and zero curl, and thereby obtain another solution which also satisfies physical boundary conditions. This would imply that our solution is not unique. In other words, it
s not possible o unambiguously reconstruct a vector field given its divergence, its curl, and physical boundary conditions. Fortunately, the equation
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which is called Laplace’s equation, has a very nice property: its solutions are unigue. That is, if we can find a solution to Laplace’s equation which satisfies the boundary conditions then
we are guaranteed that this s the only solution. We shall prove this later on in the course, Well, et us invent some solutions to Egs. (308) which arc bounded at infinity. How about

U=W,=07 310)
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Helmbholtz's theorem

Let us now embark on a slight mathematical digression. Up to now, we have only studied the eloctric and magnetic ficlds generated by stationary charges and steady currents. We have

found that these fields are describable in terms of four field equations:

V-E = £,
€
VxE = 0
for electric fields, and
v.B - o,
VxB = poj
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for magnetic fields. There are no other ficld cquations. This strongly suggests that if we know the divergence and the curl of a vector ficld then we know everything there s to know
about the field. In fact, this is the case. There is a mathematical theorem which sums this up. It is called Helmholiz's theorem after the German polymath Hermann Ludvwig Ferdinand

von Helmholtz.

Let us start with scalar ficlds. Field cquations are a type of differential equation: i.e.. they deal with the infinitesimal differences in quantitics between neighbouring points. The question

s, what differential cquation completely specifies a scalar field? This is casy. Supposc that we have a scalar field ¢ and a ficld cquation which tells us the gradient of this field at all
points: something like
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Vé=A, @83)

where A(r) s a vector field. Note that we need V X A = 0 for sclf consistency, since the curl of a gradient is automatically zero. The above equation completely specifies ¢ once

we are given the value of the ficld at a single point, P (say). Thus,

¢(Q):¢(P)+/FQV¢--{1:¢(P)+/:A-.11, @84

where @ is a gencral point. The fact that V X A = 0 means that A is a conservative ficld, which guarantces that the above cquation gives a unique value for @ at a gencral point in
space.

Suppose that we have a vector field F. How many differential equations do we need to completely specify this ficld? Hopefully, we only need two: one giving the divergence of the
field, and one giving ifs curl. Let us test this hypothesis. Suppose that we have two field cquations:

V-F=D, @85
VxF=C, (286)

where D is a scalar field and C is a vector field. For self-consistency, we need
@87
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since the divergence of a curl is automatically zero. The question is, do these two field equations plus some suitable boundary conditions completely specify F? Suppose that we write
F=-VU+VxW. (88)

In other words, we are saying that a general ficld T is the sum of a conservative field, VU, and a solenoidal field, V X W, This sounds plausible, but it remains to be proved. Let us
start by taking the divergence of the above cquation, and making use of Eq. (285). We get
ViU = -D. as9)

Note that the vector field W does not figure in this equation, because the divergence of a curl is automatically zero. Let us now take the curl of Eq. (288):
VxF=VxVxW=V(V-W)- VW =-V*W. 290)

Here, we assume that the divergence of W is zero. This is another thing which remains to be proved. Note that the scalar field U does not figure in this equation, because the curl of a

divergence is automatically zero. Using Eq. (286), we get
2
VW, = -C., [e39)
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So. we have transformed our problem into four differential cquations, Eq. (289) and Egs. (291)-(293), which we need to solve. Let us look at these cquations. We immediately notice
that they all have cxactly the same form. In fact, they arc all versions of Poisson's cquation. We can now make use of a principle made famous by Richard P. Feynman: " the same
cquations have the same solutions.” Recall that carlier on we came across the following equation:

vig=-2, 22}

€

where @ is the cloctrostatic potential and p is the charge density. We proved that the solution to this cquation, with the boundary condition that ¢ goes to zero at infinity, is

@(r) = E ple') & 295)

T dmeg ) r—r

Well, if the same equations have the same solutions, and Eq. (295) is the solution to Eq. (294), then we can immediately write down the solutions to Eq. (289) and Egs. (291)-(203). We
get
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The last three cquations can be combined to form a single vector equation:

W) =

We assumed earlier that V - W = 0. Let us check to see if this is true. Note that
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